105 resultados para Passive comfort


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the exploration and the development of computational means to investigate the behaviour of design objects before they are available for investigation in the physical world. The motivation is to inform the design process about the design object's performance in order to achieve better--more performance-oriented--design outcomes in the sense of energy efficiency and comfort performance than can be achieved by conventional design techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive flow is believed to increase the gains and reduce the costs of active suspension feeding. We used a mixture of field and laboratory experiments to evaluate whether the unstalked intertidal ascidian Pyura stolonifera exploits passive flow. We predicted that its orientation to prevailing currents and the arrangement of its siphons would induce passive flow due to dynamic pressure at the inhalant siphon, as well as by the Bernoulli effect or viscous entrainment associated with different fluid velocities at each siphon, or by both mechanisms. The orientation of P. stolonifera at several locations along the Sydney-Illawarra coast (Australia) covering a wide range of wave exposures was nonrandom and revealed that the ascidians were con- sistently oriented with their inhalant siphons directed into the waves or backwash. Flume experiments using wax mod- els demonstrated that the arrangement of the siphons could induce passive flow and that passive flow was greatest when the inhalant siphon was oriented into the flow. Field exper- iments using transplanted animals confirmed that such an orientation resulted in ascidians gaining food at greater rates, as measured by fecal production, than when oriented perpendicular to the wave direction. We conclude that P. stolonifera enhances suspension feeding by inducing pas- sive flow and is, therefore, a facultatively active suspension feeder. Furthermore, we argue that it is likely that many other active suspension feeders utilize passive flow and, therefore, measurements of their clearance rates should be made under appropriate conditions of flow to gain ecolog- ically relevant results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humla Province is a remote mountainous region of northwest Nepal. The climate is harsh and the local people are extremely poor. Most people endure a subsistence culture, living in traditional housing. Energy for cooking and heating comes from fuelwood, supplies of which are diminishing. In order to improve the indoor environment and reduce fuelwood use, smokeless stoves are being introduced to replace the open fire in Humli homes. There is some concern, however, that comfort levels may not be as acceptable with these stoves. The aim of this research was therefore to investigate ways in which the comfort levels in traditional Humli housing might be improved using simple and low cost strategies. Temperature data was recorded in four rooms of a traditional Humli home over a 12-day period and used with fuelwood data to validate a TRNSYS simulation model of the house. This model was then used to evaluate the impact on comfort levels in the house of various energy conservation strategies using PMV and PPD indicators. As a single strategy, it was found that reducing infiltration of outside air was likely to be more effective than increasing the insulation level in the ceilings. The most successful strategy, however, was the creation of sunspaces at the entrances to the living rooms. This strategy increased average internal temperatures by 1.7 and 2.3 °C. In combination with increased insulation levels, the sunspaces reduced comfort dissatisfaction levels by over 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the feasibility study on the application of passive and active stack systems to enhance natural ventilation in public housing in Singapore. About 86% of the population is staying in high-rise public housing, known as Housing and Development Board (HDB) flats, which is designed for natural ventilation. The primary objective of this work is to assess the status of natural ventilation in a typical four-room HDB flat using scaled model in the wind tunnel, and to develop an effective passive or active stack system to enhance natural ventilation in the flat. Four numbers of stacks with different sizes were tested at two locations in the flat. The study shows that the passive stack, incorporating the principle of airflow due to buoyancy, does not enhance air velocity in the flat. However, the active stack which operates based on the suction effect induced by a fan fixed at the top of the stack leads to substantial increase in the air velocity at the room and thus meeting the human’s thermal comfort condition. It was noted that the velocities increase along with the increase in the stack size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Legislation is demanding that our existing building stock be improved to a minimum of 4.0 Star AGBRS (Aust. Green Building Rating Scheme) energy standards. In the 'Green Building Fund' scheme for office buildings and other government incentives, retrofitting our existing building stock makes plain good sense. However, many of the stakeholders (owners, facilities managers, occupants) do not know where to begin to invest, for making these savings. This paperdemonstrates through two case studies, in government related  office buildihgs,how real energy savings were approached and obtained. It illustrates a process whereby preliminary and pretesting results lead to solutions of building ventilation, infiltration and comfort improvement. Furthermore, it discusses how post building performance testing results verified improvement as well as provided inputs to energy simulation, indicating where further invested improvements could be made.
One case study illustrates how the weatherisation of a building prevented a 1.5 million dollar retrofitting spending, costing the client less than one-tenth of the initial retrofitting cost. Another example demonstrates how over-engineering and incorrect ventilation concepts can cost the client up to 70% of their energy bill. Both papers involve real evidence-based pre and post measurement results in existing occupied buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis was made of the Charles Sturt University Academic Office building at Thurgoona from a thermal comfort and energy viewpoint. It was found that the offices did not meet low energy criteria and some were uncomfortable for 30% to 85% of occupied hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the construction sector has the greatest potential for climate change mitigation. This work investigates the potential for climate change mitigation in naturally ventilated and mixed mode office buildings, by evaluating the range of influence of building design and occupants on greenhouse gas emissions as well as thermal and visual comfort.

Thermal comfort is evaluated according to the EN 15251 adaptive thermal comfort model, visual comfort is based on daylight autonomy and view. Parametric studies have been conducted based on building simulation for the climate of Athens, Greece. Input data are based on a literature review, and on results from a field study conducted among office occupants and architects in Athens.

The results show that the influence of occupants on greenhouse gas emissions is larger than the influence of building design. Energy saving office equipment, as well as active use of building controls for shading and lighting by occupants are crucial parameters regarding the reduction of CO2 emissions. In mixed mode buildings, the coefficient of performance of the cooling system is an important parameter as well. Regarding thermal and visual comfort, the influence of building design is predominant. A green building, well protected against heat from the sun and able to balance solar and internal heat gains, provides higher comfort levels and is less affected by the influence of occupants. In mixed mode buildings, building design is the predominant influence on the magnitude of cooling loads. A hot summer including heat waves can significantly reduce thermal comfort and increase the resulting greenhouse gas emissions. Green buildings are least affected by these influences.

The EN 15251 adaptive thermal comfort model provides a thermal comfort evaluation method valid throughout Europe. However, for the Mediterranean climate of Athens, Greece, most of the configurations investigated within this study do not meet the requirements according to this model. EN 15251 refers to an adaptive thermal comfort model for naturally ventilated and to a static model for mechanically ventilated buildings. For mixed mode buildings, the static model is recommended, but literature indicates that occupants in those buildings might be more tolerant towards higher temperatures. The hypothetical application of the EN 15251 adaptive thermal comfort model in mixed mode offices, as investigated in this study, shows potential for greenhouse gas emission savings. However, this influence is small compared to that of building design and occupants. Conclusions are drawn regarding the categorisation and exceeding criteria according to EN 15251 adaptive thermal comfort model for offices in a Mediterranean climate.

The results of this work show, that not only green buildings, but also green occupants can significantly contribute to the mitigation of the climate change. Mechanisms of the real estate market as well as the lifestyle of occupants are important influences in this context. Sustainability therefore refers to finding the right balance between occupant’s comfort expectations and resulting greenhouse gas emissions for a specific building, rather than optimisation of single parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal and visual comfort play a very important role regarding the satisfaction of occupants with their working environments. The most effective method to achieve thermal comfort in offices is to reduce cooling loads in order to avoid additional energy-consuming devices for cooling. Building simulation software can be a helpful tool for optimisation, and typically standard values for the influencing parameters are used in order to ensure compliance to norms and regulations.

In practice many of those parameters turn out to be different compared to the simulation assumptions and the reasons may be the chosen room or building related properties as well as the user behaviour influenced by the task and the corporate culture of the company.

This paper investigates exemplary for the climate of Hamburg, Germany and a naturally ventilated typical office room, the optimisation potential of the building- and user-related parameters for thermal comfort, daylighting and view when using realistic input data for building simulation. The study has been conducted with the EnergyPlus based simulation software “Primero-Komfort” [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a holistic approach to comfort and greenhouse gas emissions in mixed mode offices. It is based on parametric studies for a typical cellular office in the Mediterranean climate of Athens, Greece, using building simulation.

Considered parameters are the influence of different building design, varying occupant behaviour and internal heat loads, as well as of an exceptionally hot summer. Additionally, the performance of a cooling strategy following the comfort limits according to the EN 15251 adaptive model is compared with the common fixed cooling set point 22°C.

The performance of mixed mode offices is evaluated regarding thermal comfort, daylight autonomy and related greenhouse gas emissions. Results indicate strategies to improve sustainability in mixed mode offices in Athens, by balancing the influencing parameters.