58 resultados para POLYMER ELECTROLYTE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The addition of low molecular weight solvents such as dimethyl formamide (DMF) and propylene carbonate (PC) to urethane crosslinked polyethers results in enhancement of polymer segmental motion, as determined in this work from polymer 13C spin lattice relaxation measurements (T1) and glass transition temperatures. The formation of salt-polyether complexes results in a decrease in T1, even in the presence of the plasticizer, indicating that the polymer ether molecules are still involved in the alkali metal coordination. In a polymer electrolyte containing 1 mol kg−1 LiClO4 the addition of DMF and PC have significantly different affects on the polymer mobility, although they both enhance the conductivity. The conductivity enhancement therefore is not solely the result of an increased solvent mobility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The addition of various kinds of plasticizers can enhance the conductivity of polymer electrolyte systems, in some cases by many orders of magnitude. The plasticizer may be a low molecular weight solvent, or be a low molecular weight polymer. As the plasticizer concentration increases there is an inevitable deterioration in material properties. In this work we have investigated the effect of plasticizer on the conductivity, thermal properties and matrial properties of a number of systems including urethane cross-linked polyethers and polyacrylates. In some of the systems, in particular the polyether electrolytes, the plasticizer acts to enhance conduction by acting as a cosolvent for the salt as well as increasing chain flexibility. Its efficacy is dependent on its structure and characteristics as a solvent. Although Tg is lowered in a close to linear fashion with increasing plasticizer content and thereby conductivity increased rapidly, the elastic modulus changes more slowly. This reflects the coupling of conduction to the local mobility of the molecular units of the combined solvent system and the relative decoupling of the mobility and glass transition from the material properties. In these systems the latter are a function mainly of the longer range structure of the polymer network. The changes in conductivity and materials properties are interpreted in terms of a configurational entropy model of the solution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Composites of a Li+ ion-conducting ceramic powder in a polyether-based elastomeric electrolyte matrix are described. At 66 wt.% of ceramic the composite can be prepared as a paste and cured into a coherent material having useful elastic and tensile properties. The total conductivity of the composite was found to be (1.9 ± 0.2) × 10−4 S cm−1 at 40 °C which was approximately 1 order of magnitude higher than the polymer electrolyte component alone. The result was also approximately 1 order of magnitude higher than the total conductivity of the ceramic powders tested in this work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear magnetic resonance spectroscopy (n.m.r.), dynamic mechanical thermal analysis (d.m.t.a.) and AC impedance techniques have been used in combination to probe the effect of electrolyte composition in an archetypal solid polymer electrolyte (SPE). A series of solid polymer electrolytes (SPEs) based on a urethane-crosslinked trifunctional poly(ethylene glycol) polymer host containing dissolved ionic species (LiClO4 and LiCF3SO3) have been studied. D.m.t.a. has established that increasing LiClO4 concentration causes a decrease in the polymer segmental mobility, owing to the formation of transient crosslinks via cation-polymer interaction. Investigation of the distribution of mechanical/structural relaxation times for the LiClO4/polymer complex with d.m.t.a. reveals that increasing LiClO4 concentration causes a slight broadening of the distribution, indicating a more heterogeneous environment. Results of n.m.r. 7Li T1 and T2 relaxation experiments support the idea that higher salt concentrations encourage ionic aggregation. This is of critical importance in determining the conductivity of the material since it affects the number of charge carriers available. Introduction of the plasticiser tetraglyme into the LiClO4-based SPEs suppresses the glass transition temperature of the SPE, and causes a significant broadening of the relaxation time distribution (as measured by d.m.t.a.).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Methoxy-ethylene glycol methacrylates, CH2=CMeCOO(CH2CH2O)nMe (n = 1, 2, 3), ethoxy-triethylene glycol methacrylate, CH2=CMeCOO(CH2CH2O)3Et, and N,N-dimethylaminoethyl methacrylate, CH2=CMeCOOCH2CH2NMe2, were used to synthesise the corresponding polymers. Conductivities of these polymers complexed with lithium perchlorate were investigated. Tetraethylene glycol dimethyl ether was used as plasticiser to increase the conductivity of the materials. A conductivity of 10−5 S cm−1 was obtained at room temperature for the plasticised polymer samples. Effects of polymer structure, plasticiser, salt concentration and temperature on conductivity and glass transition temperature of the polymer electrolytes are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanical properties of urethane crosslinked poly(ethylene oxide-co-propylene oxide) glyceryl ether-plasticiser (tetraethylene glycol dimethyl ether, or methylformamide)-salt (LiClO4)-based polymer electrolytes have been studied. It was found that, with increasing concentration of salt, the elastic modulus and tensile strength of the materials unexpectedly decrease. This is interpreted in terms of a predominance of intramolecular coordination of the Li+ ions by the polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to achieve high conductivity in a polymer electrolyte, polymer-in-ionic-liquid electrolytes have been explored. It is found in this study that poly[vinylpyrrolidone-co-(vinyl acetate)] (P(VP-c-VA)) in 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl) amide (EtMeIm+Tf2N−) and poly(N,N-dimethyl acrylamide) (PDMAA) in trimethyl butyl ammonium bis(trifluoromethane sulfonyl) amide (N1114+Tf2N−) produce ion-conducting liquids and gels. The P(VP-c-VA)/ EtMeIm+Tf2N− mixture has a conductivity around 10−3 S · cm−1 at 22 °C, for copolymer concentrations up to 30 wt.-%. Thermal analysis shows that the Tg of the P(VP-c-VA)/ EtMeIm+Tf2N− system is well described by the Fox equation as a function of polymer content. Poly(methyl methacrylate) (PMMA)/ EtMeIm+Tf2N− gel electrolytes were prepared by in-situ polymerisation of the monomer in the ionic liquid. In the presence of 0.5–2.0 wt.-% of a crosslinking agent, these PMMA-based electrolytes displayed elastomeric properties and high conductivity (ca. 10−3 S · cm−1) at room temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

N,N-Dimethylpyrrolidoium hydroxide (P11 OH) with polymer poly(tetramethyl ammonium acrylate) (PTMA) was investigated as an electrolyte in Ni/MH cells in this work. The efficiency and the performance of the electrolyte was discussed and elucidated with the performance of the cell. Their electrochemical characteristics had been investigated at different temperatures (25 °C and 50 °C) and different discharge current (15 mA g−1 and 30 mA g−1). The results show that the cell with electrolyte polymer-P11OH is dischargeable at these two temperatures, and a discharge capacity of 142 mAh g−1 at 25 °C has been obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we investigated the effect of polymer architecture on the ion dynamics and local structure to understand the factors that might lead to the design of highly conductive and mechanically robust polyelectrolytes. Molecular dynamic simulations were undertaken on the sodium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl) imide] P(STFSINa) homopolymer and its copolymers with either ether or styrene spacer groups to investigate the spacer length and polarity dependence of Na-ion transport. Using a scaled charge model, we observed a continuous ion aggregate network in the homopolymer, which facilitates the fast ion dynamics despite the rigid polymer matrix. The longest spacer groups disrupt this percolating ionic network differently, with the ether group being more disruptive than the styrene group, and leading to more discrete ionic aggregates. The copolymer with the ether spacer was also found to result in an alternative Na-ion diffusion mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The poly(N1222)xLi1-x[AMPS] ionomer system with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (ie. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222+ concentrations. At 50 mol% N1222+ concentration the polymer backbone is more rigid than for higher N1222+ concentrations, but with increasing temperature Li ion transport is more significant than polymer or quaternary ammonium cation motions. Here we suggest an ion hopping mechanism for Li+, arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

7Li and 19F NMR relaxation time (T1, T2, T) measurements have been used to probe the dynamics of LiCF3SO3 dissolved in an amorphous co-polymer poly(ethylene oxide-co-propylene oxide), and in particular the influence of the plasticising agents propylene carbonate and dimethyl formamide. The changes in relaxation behaviour of 19F and 7Li with increasing plasticiser concentration are very different, as is the effect of each plasticiser. These differences can be explained qualitatively in terms of the interaction between the plasticiser and the ions. Preliminary 7Li T1ρ measurements reveal two components at low temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a completely amorphous polyether we have investigated the effect of the inclusion of a nano-particulate filler on a polymer electrolyte. Nano-sized TiO2 is shown not to significantly affect the conductivity of composite electrolytes containing 1.0 or 1.25 mol/kg LiClO4 or 1.5 or 2.0 mol/kg LiTFSI. At 1.5 mol/kg LiClO4 a significant increase in conductivity is observed. Raman spectroscopy experiments have been used to investigate the effect of filler on ion-aggregation. Only one new vibrational mode can be assigned to the composite which is not due to the polymer electrolyte or the filler. From this work, we believe the increased conductivity observed by previous researchers as a result of filler addition may be largely attributed to the effect on the degree of crystallinity along with some disruption of ion-aggregation by the fillers in PEO based electrolytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ion association behaviour observed in our earlier studies of a polyether electrolyte system at elevated temperatures, was reminiscent of the molar conductivity behaviour typical of low dielectric constant systems. Further investigation of this relationship has led to some suggestions about the types of ionic species present in the polymer electrolyte systems. FT-IR spectroscopy has been used in this work to contrast ion association in an amorphous polyether electrolyte with two liquid electrolytes, N,N-dimethyl-formamide and tetraethylenegylcol dimethylether, containing lithium trifluoromethan sulfonate.