25 resultados para Optimization techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the ‘female athlete triad’. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture.
This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging.
Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-mix-low-volume (HMLV) production is currently a worldwide manufacturing trend. It requires a high degree of customization in the manufacturing process to produce a wide range of products in low quantity in order to meet customers' demand for more variety and choices of products. Such a kind of business environment has increased the conversion time and decreased the production efficiency due to frequent production changeover. In this paper, a layered-encoding cascade optimization (LECO) approach is proposed to develop an HMLV product-mix optimizer that exhibits the benefits of low conversion time, high productivity, and high equipment efficiency. Specifically, the genetic algorithm (GA) and particle swarm optimization (PSO) techniques are employed as optimizers for different decision layers in different LECO models. Each GA and PSO optimizer is studied and compared. A number of hypothetical and real data sets from a manufacturing plant are used to evaluate the performance of the proposed GA and PSO optimizers. The results indicate that, with a proper selection of the GA and PSO optimizers, the LECO approach is able to generate high-quality product-mix plans to meet the production demands in HMLV manufacturing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Levenberg Marquardt (LM) algorithm is one of the most effective algorithms in speeding up the convergence rate of the Artificial Neural Networks (ANN) with Multilayer Perceptron (MLP) architectures. However, the LM algorithm suffers the problem of local minimum entrapment. Therefore, we introduce several improvements to the Levenberg Marquardt algorithm by training the ANNs with meta-heuristic nature inspired algorithm. This paper proposes a hybrid technique Accelerated Particle Swarm Optimization using Levenberg Marquardt (APSO_LM) to achieve faster convergence rate and to avoid local minima problem. These techniques are chosen since they provide faster training for solving pattern recognition problems using the numerical optimization technique.The performances of the proposed algorithm is evaluated using some bench mark of classification’s datasets. The results are compared with Artificial Bee Colony (ABC) Algorithm using Back Propagation Neural Network (BPNN) algorithm and other hybrid variants. Based on the experimental result, the proposed algorithms APSO_LM successfully demonstrated better performance as compared to other existing algorithms in terms of convergence speed and Mean Squared Error (MSE) by introducing the error and accuracy in network convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic search techniques such as evolutionary algorithms (EA) are known to be better explorer of search space as compared to conventional techniques including deterministic methods. However, in the era of big data like most other search methods and learning algorithms, suitability of evolutionary algorithms is naturally questioned. Big data pose new computational challenges including very high dimensionality and sparseness of data. Evolutionary algorithms' superior exploration skills should make them promising candidates for handling optimization problems involving big data. High dimensional problems introduce added complexity to the search space. However, EAs need to be enhanced to ensure that majority of the potential winner solutions gets the chance to survive and mature. In this paper we present an evolutionary algorithm with enhanced ability to deal with the problems of high dimensionality and sparseness of data. In addition to an informed exploration of the solution space, this technique balances exploration and exploitation using a hierarchical multi-population approach. The proposed model uses informed genetic operators to introduce diversity by expanding the scope of search process at the expense of redundant less promising members of the population. Next phase of the algorithm attempts to deal with the problem of high dimensionality by ensuring broader and more exhaustive search and preventing premature death of potential solutions. To achieve this, in addition to the above exploration controlling mechanism, a multi-tier hierarchical architecture is employed, where, in separate layers, the less fit isolated individuals evolve in dynamic sub-populations that coexist alongside the original or main population. Evaluation of the proposed technique on well known benchmark problems ascertains its superior performance. The algorithm has also been successfully applied to a real world problem of financial portfolio management. Although the proposed method cannot be considered big data-ready, it is certainly a move in the right direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research, we propose a facial expression recognition system with a layered encoding cascade optimization model. Since generating an effective facial representation is a vital step to the success of facial emotion recognition, a modified Local Gabor Binary Pattern operator is first employed to derive a refined initial face representation and we then propose two evolutionary algorithms for feature optimization including (i) direct similarity and (ii) Pareto-based feature selection, under the layered cascade model. The direct similarity feature selection considers characteristics within the same emotion category that give the minimum within-class variation while the Pareto-based feature optimization focuses on features that best represent each expression category and at the same time provide the most distinctions to other expressions. Both a neural network and an ensemble classifier with weighted majority vote are implemented for the recognition of seven expressions based on the selected optimized features. The ensemble model also automatically updates itself with the most recent concepts in the data. Evaluated with the Cohn-Kanade database, our system achieves the best accuracies when the ensemble classifier is applied, and outperforms other research reported in the literature with 96.8% for direct similarity based optimization and 97.4% for the Pareto-based feature selection. Cross-database evaluation with frontal images from the MMI database has also been conducted to further prove system efficiency where it achieves 97.5% for Pareto-based approach and 90.7% for direct similarity-based feature selection and outperforms related research for MMI. When evaluated with 90° side-view images extracted from the videos of the MMI database, the system achieves superior performances with >80% accuracies for both optimization algorithms. Experiments with other weighting and meta-learning combination methods for the construction of ensembles are also explored with our proposed ensemble showing great adpativity to new test data stream for cross-database evaluation. In future work, we aim to incorporate other filtering techniques and evolutionary algorithms into the optimization models to further enhance the recognition performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical load forecasting plays a vital role in order to achieve the concept of next generation power system such as smart grid, efficient energy management and better power system planning. As a result, high forecast accuracy is required for multiple time horizons that are associated with regulation, dispatching, scheduling and unit commitment of power grid. Artificial Intelligence (AI) based techniques are being developed and deployed worldwide in on Varity of applications, because of its superior capability to handle the complex input and output relationship. This paper provides the comprehensive and systematic literature review of Artificial Intelligence based short term load forecasting techniques. The major objective of this study is to review, identify, evaluate and analyze the performance of Artificial Intelligence (AI) based load forecast models and research gaps. The accuracy of ANN based forecast model is found to be dependent on number of parameters such as forecast model architecture, input combination, activation functions and training algorithm of the network and other exogenous variables affecting on forecast model inputs. Published literature presented in this paper show the potential of AI techniques for effective load forecasting in order to achieve the concept of smart grid and buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind farms are producing a considerable portion of the world renewable energy. Since the output power of any wind farm is highly dependent on the wind speed, the power extracted from a wind park is not always a constant value. In order to have a non-disruptive supply of electricity, it is important to have a good scheduling and forecasting system for the energy output of any wind park. In this paper, a new hybrid swarm technique (HAP) is used to forecast the energy output of a real wind farm located in Binaloud, Iran. The technique consists of the hybridization of the ant colony optimization (ACO) and particle swarm optimization (PSO) which are two meta-heuristic techniques under the category of swarm intelligence. The hybridization of the two algorithms to optimize the forecasting model leads to a higher quality result with a faster convergence profile. The empirical hourly wind power output of Binaloud Wind Farm for 364 days is collected and used to train and test the prepared model. The meteorological data consisting of wind speed and ambient temperature is used as the inputs to the mathematical model. The results indicate that the proposed technique can estimate the output wind power based on the wind speed and the ambient temperature with an MAPE of 3.513%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing is becoming popular as the next infrastructure of computing platform. Despite the promising model and hype surrounding, security has become the major concern that people hesitate to transfer their applications to clouds. Concretely, cloud platform is under numerous attacks. As a result, it is definitely expected to establish a firewall to protect cloud from these attacks. However, setting up a centralized firewall for a whole cloud data center is infeasible from both performance and financial aspects. In this paper, we propose a decentralized cloud firewall framework for individual cloud customers. We investigate how to dynamically allocate resources to optimize resources provisioning cost, while satisfying QoS requirement specified by individual customers simultaneously. Moreover, we establish novel queuing theory based model M/Geo/1 and M/Geo/m for quantitative system analysis, where the service times follow a geometric distribution. By employing Z-transform and embedded Markov chain techniques, we obtain a closed-form expression of mean packet response time. Through extensive simulations and experiments, we conclude that an M/Geo/1 model reflects the cloud firewall real system much better than a traditional M/M/1 model. Our numerical results also indicate that we are able to set up cloud firewall with affordable cost to cloud customers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an optimization problem in ecology where our objective is to maximize biodiversity with respect to different land-use allocations. As it turns out, the main problem can be framed as learning the weights of a weighted arithmetic mean where the objective is the geometric mean of its outputs. We propose methods for approximating solutions to this and similar problems, which are non-linear by nature, using linear and bilevel techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the considerable recent attention to distributed power generation and interest in sustainable energy, the integration of photovoltaic (PV) systems to grid-connected or isolated microgrids has become widespread. In order to maximize power output of PV system extensive research into control strategies for maximum power point tracking (MPPT) methods has been conducted. According to the robust, reliable, and fast performance of artificial intelligence-based MPPT methods, these approaches have been applied recently to various systems under different conditions. Given the diversity of recent advances to MPPT approaches a review focusing on the performance and reliability of these methods under diverse conditions is required. This paper reviews AI-based techniques proven to be effective and feasible to implement and very common in literature for MPPT, including their limitations and advantages. In order to support researchers in application of the reviewed techniques this study is not limited to reviewing the performance of recently adopted methods, rather discusses the background theory, application to MPPT systems, and important references relating to each method. It is envisioned that this review can be a valuable resource for researchers and engineers working with PV-based power systems to be able to access the basic theory behind each method, select the appropriate method according to project requirements, and implement MPPT systems to fulfill project objectives.