42 resultados para Oclusao vascular mesenterica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Studies of sodium have shown improvements in vascular function and blood pressure (BP). The effect of chronic sodium loading from a low-sodium diet to a Western diet on vascular function and BP has been less well studied.

OBJECTIVE: The objective was to examine the effects of dietary salt intake on vascular function and BP.

DESIGN: Thirty-five hypertensive volunteers met the inclusion criteria. After a 2-wk run-in with a low-sodium diet (60 mmol/d), the participants maintained their diets and were randomly assigned to receive sequentially 1 of 3 interventions for 4 wk, with a 2-wk washout between interventions: sodium-free tomato juice (A), tomato juice containing 90 mmol Na (B), and tomato juice containing 140 mmol Na (C). The outcomes were changes in pulse wave velocity (PWV), systolic BP (SBP), and diastolic BP (DBP).

RESULTS: The difference in PWV between interventions B and A was 0.39 m/s (95% CI: 0.18, 0.60 m/s; P = 0.001) and between C and A was 0.35 m/s (95% CI: 0.13, 0.57 m/s; P = 0.01). Differences in SBP and DBP between interventions B and A were 4.4 mm Hg (95% CI: 1.2, 7.8 mm Hg; P = 0.01) and 2.4 mm Hg (95% CI: 0.8, 4.1 mm Hg; P = 0.001), respectively, and between interventions C and A were 5.6 mm Hg (95% CI: 2.7, 8.4 mm Hg; P = 0.01) and 3.3 mm Hg (95% CI: 1.5, 5.0 mm Hg; P = 0.001), respectively. Changes in PWV correlated with changes in SBP (r = 0.52) and DBP (r = 0.58).

CONCLUSIONS:
Dietary salt loading produced significant increases in PWV and BP in hypertensive volunteers. Correlations between BP and PWV suggest that salt loading may have a BP-independent effect on vascular wall function. This further supports the importance of dietary sodium restriction in the management of hypertension. This trial was registered with the Australian and New Zealand Clinical Trials Registry as ACTRN12609000161224.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increased awareness regarding the benefits of ultrasound for vascular access surveillance and guided cannulation in haemodialysis. However, finding time to train staff whilst working within the clinical setting is challenging. In 2009 a workshop was introduced in Victoria to provide a platform for nursing staff to learn advanced skills in surveillance and cannulation in a safe, supportive environment. The workshop covered topics such as: assessment and cannulation; surgical perspectives in vascular access; radiological perspectives in vascular access; surveillance and monitoring; cannulation competency package; antegrade/antegrade cannulation; and introduction to ultrasound plus five hours of practical sessions. Feedback from the workshop over the past three years has been positive, and staff have benefited from the both the theoretical and clinical components of the workshop. The success of this workshop highlights the demand for continuing education within the renal workforce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction
In January 2006, the Renal Dialysis Unit at Geelong Hospital appointed a Vascular Access Nurse. A Transonic Flow Qc HDO2 Ultrasound Dilution Monitor was purchased to monitor access flow and recirculation in arteriovenous fistulae in an attempt to predict AVF stenoses requiring early surgical correction.

Methods
A bi-monthly monitoring program tested all facility-based patients. 82 patients were assessed for access flow and recirculation between February and December 2006.

Results
18 (22%) had poor AVF function; 13 with access flows <500ml/minute on initial testing and 5 with an access flow decreasing >25% over a four month period. Of the 18 patients shown to have poor access flow, 2 died within one month of measurement while 5 were too frail to attempt corrective surgery. The remaining 11 proceeded to ultrasound or fistulography. A >50% stenosis was detected in all 11 cases. Of these, 4 had successful vein patch surgery and one had PTFE grafting, each with marked improvement in access flow. One had failed vein patch surgery requiring creation of a femoral AVF, one patient required cvc insertion to await AVF creation, and one had failed stenting requiring a permanent cvc. 3 died before planned surgery.

Conclusion
5 of the 82 patients that had access flow assessment, and needed further evaluation, proceeded to successful pre-emptive surgical intervention. We believe the Transonic is a useful adjunct to routine clinical AVF surveillance, in providing early evidence of AVF failure that can be avoided by pre-emptive surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Corneal vasculature change in contact lens wearers has been linked to the level of hypoxia within the cornea. To assess the impact a treatment has on limbal vessels, a sensitive method of measurement and quantification is required.

Methods. A group of 21 highly myopic, hydrogel wearers, with preexisting signs of corneal hypoxia, were enrolled into a study where they wore sifilcon A silicone hydrogel lenses (Dk/t = 117), on a daily wear basis for 9 months. At all scheduled visits, photographs were taken of the superior, inferior, temporal, and nasal limbal regions which were then imported into Adobe Photoshop. A red-free filter was applied to enhance the contrast of the blood columns. In each quadrant, the length of the longest visible blood column was measured and the blood columns that penetrated >0.5 mm into the cornea were counted. A control group of 11 non-lens wearers was recruited. Their photographs were taken at the beginning of the study and 9 months later. An independent, masked observer assessed the photographs.

Results. There was a significant decrease in the maximum penetration of the blood column in all quadrants (p < 0.001) from baseline to the 9-month visit (e.g., superior: baseline 0.84 ± 0.39 mm; 9 months 0.63 ± 0.20 mm). There was also significant reduction in the number of visible blood columns longer than 0.5 mm in each quadrant (p < 0.001) from baseline to 9 months in all quadrants (e.g., superior: baseline 14.0 ± 8.2; 9 months 6.5 ± 6.0). The control group showed no change over time for the maximum blood column length (p = 0.638) or the number of columns >0.5 mm (p = 0.341).

Conclusions. A group of highly myopic subjects exhibited reduction in the maximum length and number of blood columns in the cornea when refit with a highly permeable silicone hydrogel material. The use of photography, along with Adobe Photoshop software, provides a reliable way of measuring corneal vascular responses over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infiltration of macrophages into the artery wall plays detrimental roles during hypertension by promoting vascular inflammation and endothelial dysfunction, and it occurs via a chemo-attractant action of chemokines on macrophage cytokine receptors. We sought to identify the key chemokine receptors associated with macrophage infiltration into the vascular wall during deoxycorticosterone acetate (DOCA)/salt-induced hypertension in mice and to evaluate the impact of pharmacological inhibition of these receptors on blood pressure and leukocyte accumulation. Mice treated with DOCA/salt for 21 days displayed markedly elevated systolic blood pressure (158±2 versus 114±5 mm Hg in sham group; P<0.0001). Polymerase chain reaction screening via a gene array of 20 chemokine receptors indicated an increased expression of CCR2 in aortas of DOCA/salt-treated mice. Real-time polymerase chain reaction confirmed mRNA upregulation of CCR2 in aortas from DOCA/salt-treated animals and of the CCR2 ligands CCL2, CCL7, CCL8, and CCL12 (all >2-fold versus sham; P<0.05). Flow cytometry revealed 2.9-fold higher macrophage numbers (ie, CD45+ CD11b+ F4/80+ cells) in the aortic wall of DOCA/salt versus sham-treated mice. Intervention with a CCR2 antagonist, INCB3344 (30 mg/kg per day, IP), 10 days after the induction of hypertension with DOCA/salt treatment, reduced the aortic expression of CCR2 mRNA and completely reversed the DOCA/salt-induced influx of macrophages. Importantly, INCB3344 substantially reduced the elevated blood pressure in DOCA/salt-treated mice. Hence, our findings highlight CCR2 as a promising therapeutic target to reduce both macrophage accumulation in the vascular wall and blood pressure in hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:  The Kimba mouse carries a human vascular endothelial growth factor transgene causing retinal neovascularisation similar to that seen in diabetic retinopathy. Here, we examine the relationship between differential gene expression induced by vascular endothelial growth factor overexpression and the architectural changes that occur in the retinae of these mice.

Methods:  Retinal gene expression changes in juvenile and adult Kimba mice were assayed by microarray and compared with age-matched wild-type littermates. Transcription of selected genes was validated by quantitative real-time polymerase chain reaction. Protein translation was determined using immunohistochemistry and enzyme-linked immunosorbent assay.

Results:  Semaphorin 3C was upregulated, and nuclear receptor subfamily 2, group 3, member 3 (Nr2e3) was downregulated in juvenile Kimba mice. Betacellulin and endothelin 2 were upregulated in adults. Semaphorin 3C colocalized with glial fibrillary acidic protein in Müller cells of Kimba retinae at greater signal intensities than in wild type. Endothelin 2 colocalised to Müller cell end feet and extended into the outer limiting membrane. Endothelin receptor type B staining was most pronounced in the inner nuclear layer, the region containing Müller cell somata.

Conclusions:  An early spike in vascular endothelial growth factor induced significant long-term retinal neovascularisation associated with changes to the retinal ganglion, photoreceptor and Müller cells. Overexpression of vascular endothelial growth factor led to dysregulation of photoreceptor metabolism through differential expression of Nr2e3, endothelin 2, betacellulin and semaphorin 3C. Alterations in the expression of these genes may therefore play key roles in the pathological mechanisms that result from retinal neovascularisation.