68 resultados para Nuclear magnetic resonance spectroscopy.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion conducting polymer gels prepared from (ethylene oxide)n grafted methacrylates, ethylene carbonate (EC), gamma butyrolactone (gBL), and lithium hexafluorophosphate are studied by means of nuclear magnetic resonance spectroscopy. This study shows that there are at least two possible lithium sites with different mobility. The lithium-ions with lower mobility dominate at room temperature, but this is changed as the temperature is increased. The NMR results also show that the 7Li spin–spin relaxation time decreases with increasing length of the grafted ethylene oxide side chains, indicating a stronger interaction between the polymer and the Li-ions, and hence, a lower mobility of the Li-ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear magnetic resonance spectroscopy (n.m.r.), dynamic mechanical thermal analysis (d.m.t.a.) and AC impedance techniques have been used in combination to probe the effect of electrolyte composition in an archetypal solid polymer electrolyte (SPE). A series of solid polymer electrolytes (SPEs) based on a urethane-crosslinked trifunctional poly(ethylene glycol) polymer host containing dissolved ionic species (LiClO4 and LiCF3SO3) have been studied. D.m.t.a. has established that increasing LiClO4 concentration causes a decrease in the polymer segmental mobility, owing to the formation of transient crosslinks via cation-polymer interaction. Investigation of the distribution of mechanical/structural relaxation times for the LiClO4/polymer complex with d.m.t.a. reveals that increasing LiClO4 concentration causes a slight broadening of the distribution, indicating a more heterogeneous environment. Results of n.m.r. 7Li T1 and T2 relaxation experiments support the idea that higher salt concentrations encourage ionic aggregation. This is of critical importance in determining the conductivity of the material since it affects the number of charge carriers available. Introduction of the plasticiser tetraglyme into the LiClO4-based SPEs suppresses the glass transition temperature of the SPE, and causes a significant broadening of the relaxation time distribution (as measured by d.m.t.a.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

31P, 19F and 13C solid state NMR analysis has been used to investigate the intercalation/de-intercalation of both anions and cations in electrochemically synthesized polypyrrole films. Use of a phosphonium-based ionic liquid, tri(hexyl)(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide, allows the separate detection of the cation and anion by analysis of the phosphorous and fluorine resonances, respectively. Initial results indicate the incorporation of both cations and anions during film growth in the ionic liquid. There is a notable change in the 31P chemical shift of the cation on incorporation into the film, consistent with a significant change in environment compared to the pure ionic liquid. Despite its large size, the phosphonium cation can be completely expelled from the film by oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inclusion host-guest complex between β-cyclodextrin (β-CD) and L-phenylalanine (LPhe) was investigated using 1H nuclear magnetic resonance spectroscopy and molecular docking techniques. 1H chemical shift changes of β-CD were used to calculate the stability constant (Kstb) of the complex. On the basis of the Hildebrand-Benesi method, the Kstb of the 1:1 complex in D2O solution at 300 K, pD 7.6 was of 25.5 M-1, implying a fast intermolecular exchange rate process. Interestingly, docking simulation indicates the toroidal space can be occupied by L-Phe with two favorable arrangements. For the predicted model with the higher probability score, the L-Phe aromatic ring is facing to the secondary hydroxyl groups of β-CD. Results from NMR and docking simulation are in good agreement with the x-ray structures of β-CD/L-phenylalanine derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although the relationship between cigarette smoking and cardiovascular disease (CVD) is well-established, the underlying mechanisms remain unclear. Smokers have a more atherogenic lipid profile but this may be mediated by lifestyle-related factors. Because detailed analysis of lipoprotein subclasses using nuclear magnetic resonance spectroscopy (NMR) may improve characterisation of lipid abnormalities, we applied the technique to investigate the relationships between smoking status, other lifestyle-related risk factors and lipoproteins in a contemporary cohort.

Methods: A total of 612 participants (360 women) aged 40-69 years at baseline (1990-1994) enrolled in the community-based Melbourne Collaborative Cohort Study had plasma lipoproteins measured using NMR. Data were analysed separately for men and women.

Results: After adjusting for other lifestyle-related risk factors, mean total low-density lipoprotein (LDL) particle concentration was higher for female smokers than non-smokers. Both medium and small LDL particle concentrations contributed to this difference. Both total high-density lipoprotein (HDL) and large HDL particle concentrations were lower for female smokers than non-smokers. The proportion at increased risk (according to NMR-determined particle size and number) was higher for female smokers than non-smokers. For men, there were few differences in lipoprotein measures related to smoking.

Conclusions: Female smokers have a more atherogenic lipoprotein profile than non-smokers, and this difference is independent of lifestyle-related risk factors. Lipoprotein profiles did not differ greatly between male smokers and non-smokers. These data reinforce the importance for women of not smoking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stressors of various kinds constantly affect fish both in the wild and in culture, examples being acute water temperature and quality changes, predation, handling, and confinement. Known physiological responses of fish to stress such as increases in plasma cortisol and glucose levels, are considered to be adaptive, allowing the animal to cope in the short term. Prolonged exposure to stressors however, has the potential to affect growth, immune function, and survival. Nonetheless, little is known about the mechanisms underlying the long-term stress response. We have investigated the metabolic response of juvenile Atlantic salmon (Salmo salar) to long-term handling stress by analyzing fish plasma via 1H nuclear magnetic resonance spectroscopy and ultra high performance liquid chromatography–mass spectrometry (UPLC–MS), and comparing results with controls. Analysis of NMR data indicated a difference in the metabolic profiles of control and stressed fish after 1 week of stress with a maximum difference observed after 2 weeks. These differences were associated with stress-induced increases in phosphatidyl choline, lactate, carbohydrates, alanine, valine and trimethylamine-N-oxide, and decreases in low density lipoprotein, very low density lipoprotein, and lipid. UPLC-MS data showed differences at week 2, associated with another set of compounds, tentatively identified on the basis of their mass/charge. Overall the results provided a multi-faceted view of the response of fish to long-term handling stress, indicating that the metabolic disparity between the control and stress groups increased to week 2, but declined by weeks 3 and 4, and revealed several new molecular indicators of long-term stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic techniques are widely used in forensic laboratories for quantitative and qualitative analysis. This artictle provides an overview of the spectroscopic techniques most commonly encountered in forensic laboratories. Infrared spectroscopy, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy energy dispersive X-ray spectroscopy, and nuclear magnetic resonance spectroscopy are used mainly for identification or characterization of substances. Visible and ultraviolet spectroscopy, atomic absorption spectroscopy and atomic emission spectroscopy are used mainly for measurement of substances or elements. Some techniques can be used for both identification and measurement. Related techniques such as molecular fluorescence, chemiluminescence and synchrotron techniques are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to discover phytochemicals that are potentially bioactive against Phytophthora cinnamomi, (a soil-borne plant pathogen) a metabolite profiling protocol for investigation of metabolic changes in Lupinus angustifolius L. plant roots in response to pathogen challenge has been established. Analysis of the metabolic profiles from healthy and P. cinnamomi-inoculated root tissue with high resolution mass spectrometry and nuclear magnetic resonance spectroscopy confirmed that although susceptible, L. angustifolius upregulated a defence associated genistein and 2′-hydroxygenistein-based isoflavonoid and a soyasapogenol saponin at 12h post inoculation which increased in concentration at 72h post inoculation. In contrast to the typical susceptible interaction, the application of a phosphorous-based treatment to L. angustifolius foliage 48h before P. cinnamomi challenge negated the ability of the pathogen to colonise the root tissue and cause disease. Importantly, although the root profiles of water-treated and phosphite-treated plants post pathogen inoculation contained the same secondary metabolites, concentration variations were observed. Accumulation of secondary metabolites within the P. cinnamomi-inoculated plants confirms that pathogen ingress of the root interstitially occurs in phosphite-treated plants, confirming a direct mode of action against the pathogen upon breaching the root cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion-conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1-ethyl-1-methylpyrrolidinium tetrafluoroborate ([C2 mpyr][BF4 ]) are studied by a combination of quantum chemical calculations and advanced solid-state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low-temperature phase (-45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) (PEG-b-PC) block copolymer is presented here using a simple bio-chemistry coupling reaction between poly(bisphenol A carbonate) (PC) with a monomethylether poly(ethylene glycol) (mPEG-OH) block, mediated by dicyclohexylcarbodiimide/4-dimethylaminopyridine. This method inherently allows great flexibility in the choice of starting materials as well as easy product purification only requiring phase separation and water washing. Collective data from Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and modulated dynamic scanning calorimetry (MDSC) confirmed the successful attachment of the poly(ethylene glycol) (mPEG-OH) and poly(bisphenol A carbonate) (PC) blocks. The preparation of nano-capsules was carried out by sudden addition of water to PEG-b-PC copolymers dispersed in THF, resulting in the controlled precipitation (i.e. thermodynamic entrapment) of the copolymer. Nano-capsules as small as 85 nm ± 30 nm were produced using this simple and fast methodology. We also demonstrate that encapsulating a water-insoluble bisphenol A diglycidyl ether (DGEBA) epoxy resin is possible highlighting the potential use of these capsules as a chemical delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent-free polymer electrolytes based on poly(vinyl alcohol) (PVA) and LiCF3SO3 have shown relatively high conductivities (10−8-10−4 S cm−1), with Arrhenius temperature dependence below the differential scanning calorimeter (DSC) glass transition temperature (343 K). This behaviour is in stark contrast to traditional polymer electrolytes in which the conductivity reflects VTF behaviour. 7Li nuclear magnetic resonance (NMR) spectroscopy has been employed to develop a better understanding of the conduction mechanism. Variable temperature NMR has indicated that, unlike traditional polymer electrolytes where the linewidth reaches a rigid lattice limit near Tg, the lithium linewidths show an exponential decrease with increasing temperature between 260 and 360 K. The rigid lattice limit appears to be below 260 K. Consequently, the mechanism for ion conduction appears to be decoupled from the main segmental motions of the PVA. Possible mechanisms include ion hopping, proton conduction or ionic motion assisted by secondary polymer relaxations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Diagnosis of patellar tendinopathy is based primarily on clinical examination; however, it is commonplace to image the patellar tendon for diagnosis confirmation, with the imaging modalities of choice being magnetic resonance imaging (MRI) and ultrasonography (US). The comparative accuracy of these modalities has not been established.

Hypothesis: Magnetic resonance imaging and US have good (>80%) accuracy and show substantial agreement in confirming clinically diagnosed patellar tendinopathy.

Study Design: Cohort study (diagnosis); Level of evidence, 2.

Methods: Magnetic resonance imaging and US (gray scale [GS-US] and color Doppler [CD-US]) features of 30 participants with clinically diagnosed patellar tendinopathy and 33 activity-matched, asymptomatic participants were prospectively compared. Accuracy, sensitivity, specificity, positive and negative predictive values, and the likelihood of positive and negative test results were determined for each technique.

Results: The accuracy of MRI, GS-US, and CD-US was 70%, 83%, and 83%, respectively (P = .04; MRI vs GS-US). The likelihood of positive MRI, GS-US, and CD-US was 3.1, 4.8, and 11.6, respectively. The MRI and GS-US had equivalent specificity (82% vs 82%; P = 1.00); however, the sensitivity of GS-US was greater than MRI (87% vs 57%; P = .01). Sensitivity (70% vs 87%; P = .06) and specificity (94% vs 82%; P = .10) did not differ between CD-US and GS-US.

Conclusions: Ultrasonography was more accurate than MRI in confirming clinically diagnosed patellar tendinopathy. GS-US and CD-US may represent the best combination for confirming clinically diagnosed patellar tendinopathy because GS-US had the greatest sensitivity, while a positive CD-US test result indicated a strong likelihood an individual was symptomatic.