17 resultados para Non-dominant limb


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcranial magnetic stimulation has been used to study changes in central excitability associated with motor tasks. Recently, we reported that a finger flexion–extension task performed at a maximal voluntary rate (MVR) could not be sustained and that this was not due to muscle fatigue, but was more likely a breakdown in central motor control. To determine the central changes that accompany this type of movement task, we tracked motor-evoked potential (MEP) amplitude from the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles of the dominant hand in normal subjects for 20 min after a 10 sec index finger flexion–extension task performed at MVR and at a moderate sustainable rate (MSR) and half the MSR (MSR/2). The FDI MEP amplitude was reduced for up to 6–8 min after each of the tasks but there was a greater and longer-lasting reduction after the MSR and MSR/2 tasks compared to the MVR task. There was a similar reduction in the amplitude of the FDI MEP after a 10 sec cyclic index finger abduction–adduction task when the FDI was acting as the prime mover. The amplitude of the MEP recorded from the inactive APB was also reduced after the flexion–extension tasks, but to a lesser degree and for a shorter duration. Measurements of short-interval cortical inhibition revealed an increase in inhibition after all of the finger flexion–extension tasks, with the MSR task being associated with the greatest degree of inhibition. These findings indicate that a demanding MVR finger movement task is followed by a period of reduced corticomotor excitability and increased intracortical inhibition. However, these changes also occur with and are greater with slower rates of movement and are not specific for motor demand, but may be indicative of adaptive changes in the central motor pathway after a period of repetitive movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Single sessions of bihemispheric transcranial direct-current stimulation (bihemispheric-tDCS) with concurrent rehabilitation improves motor function in stroke survivors, which outlasts the stimulation period. However few studies have investigated the behavioral and neurophysiological adaptations following a multi-session intervention of bihemispheric-tDCS concurrent with rehabilitation. Objective: This pilot study explored the immediate and lasting effects of 3-weeks of bihemispheric-tDCS and upper limb (UL) rehabilitation on motor function and corticospinal plasticity in chronic stroke survivors. Methods: Fifteen chronic stroke survivors underwent 3-weeks of UL rehabilitation with sham or real bihemispheric-tDCS. UL motor function was assessed via the Motor Assessment Scale (MAS), Tardieu Scale and grip strength. Corticospinal plasticity was indexed by motor evoked potentials (MEPs), cortical silent period (CSP) and short-interval intracortical inhibition (SICI) recorded from the paretic and non-paretic ULs, using transcranial magnetic stimulation (TMS). Measures were taken at baseline, 48 h post and 3-weeks following (follow-up) the intervention. Results: MAS improved following both real-tDCS (62%) and sham-tDCS (43%, P < 0.001), however at 3-weeks follow-up, the real-tDCS condition retained these newly regained motor skills to a greater degree than sham-tDCS (real-tDCS 64%, sham-tDCS 21%, P = 0.002). MEP amplitudes from the paretic UL increased for real-tDCS (46%: P < 0.001) and were maintained at 3-weeks follow-up (38%: P = 0.03), whereas no changes were observed with sham-tDCS. No changes in MEPs from the non-paretic nor SICI from the paretic UL were observed for either group. SICI from the non-paretic UL was greater at follow-up, for real-tDCS (27%: P = 0.04). CSP from the non-paretic UL increased by 33% following the intervention for real-tDCS compared with sham-tDCS (P = 0.04), which was maintained at 3-weeks follow-up (24%: P = 0.04). Conclusion: bihemispheric-tDCS improved retention of gains in motor function, which appears to be modulated through intracortical inhibitory pathways in the contralesional primary motor cortex (M1). The findings provide preliminary evidence for the benefits of bihemispheric-tDCS during rehabilitation. Larger clinical trials are warranted to examine long term benefits of bihemispheric-tDCS in a stroke affected population.