31 resultados para Nerves.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In searching for biological evidence that essential hypertension is caused by chronic mental stress, a disputed proposition, parallels are noted with panic disorder, which provides an explicit clinical model of recurring stress responses.
2. There is clinical comorbidity; panic disorder prevalence is increased threefold in essential hypertension. Plasma cortisol is elevated in both.
3. In panic disorder and essential hypertension, but not in health, single sympathetic nerve fibres commonly fire repeatedly within an individual cardiac cycle; this appears to be a signature of stress exposure. For both conditions, adrenaline cotransmission is present in sympathetic nerves.
4. Tissue nerve growth factor is increased in both (nerve growth factor is a stress reactant). There is induction of the adrenaline synthesizing enzyme, phenylethanolamine-N-methyltransferase, in sympathetic nerves, an explicit indicator of mental stress exposure.
5. The question of whether chronic mental stress causes high blood pressure, still hotly debated, has been reviewed by an Australian Government body, the Specialist Medical Review Council. Despite the challenging medicolegal implications, the Council determined that stress is one proven cause of hypertension, this ruling being published in the 27 March 2002 Australian Government Gazette. This judgement was reached after consideration of the epidemiological evidence, but in particular after review of the specific elements of the neural pathophysiology of essential hypertension, described above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitory neurons exert control the expression of many aspects of behaviour by regulating the effectiveness of excitatory neural function. By comparison with excitatory neural systems, relatively little is known about the development of inhibitory neurons and the influence which these neurons exert on the development of other neural systems. Two issues which relate to the development of inhibitory neurons are of particular interest. First, a paradox arises when inhibitory neurons are considered in terms of modern models of synaptic development which involve activity-dependent mechanisms of synaptic plasticity. Second, there is some evidence that inhibitory neurotransmitters may act in a special trophic manner during the early development of nervous systems. Investigations of these issues would be greatly facilitated in a neural system in which it was possible to experimentally control aspects of the development of individual pre- and postsynaptic cells. The aim of the results presented in this thesis was to characterise the normal development of one such system: the GABAergic inhibitory system of the Australian freshwater crayfish, Cherax destructor. The ontogeny of the inhibitory neurotransmitter GABA across the embryonic period of 30% to 100% development was investigated using immunohistochemical techniques. GABA-like immunoreactive cells and fibres were first detected in the embryonic brain region. The expression of GABA-like immunoreactivity progressed along a rostro-caudal gradient, with GABA-like immunoreactive cells being detected in the most anterior thoracic ganglia at 45% development and in all ganglia by 65% development. GABA-like immunoreactive fibres were evident in peripheral nerves as early as 55% development and ramified extensively throughout the neuropil of the nervous system by 65% development. By contrast, immunoreactivity to the primary excitatory neurotransmitter, glutamate, was not detected until 60-65% development. Glutamate-like immunoreactivity at 60-65% development was evident only in the form of punctate staining in the midline of the ventral nerve cord. Cell body staining was observed only at 90% development and was restricted to only a few cells on the periphery of the ventral nerve cord. Radio-labelled ligand binding methods and autoradiography were used to study the expression of putative GABA receptors in the Cherax embryos from 30% to 100% development. Specific binding was evident in the earliest embryos studies at 30% development. There was an initial increase in binding from 30% to 40% development, followed by a dramatic drop to almost zero binding at 50-55% development. This was followed by a gradual increase in binding levels with age, reaching a plateau at 85% development. Preliminary pharmacological evaluation of binding indicated that at least three GABA receptor types were expressed during embryonic development. Methods for culturing, dissociated neural tissues explanted form Cherax embryos at 85% development were established. The success of cultures was demonstrated by neurite extension, and neuronal networks in which neurons appeared to form connections with other neurons and with explanted muscle cells after two days in culture. Immunohistochemical studies demonstrated that some explanted neurons expressed GABA-like immunoreactivity within two days of explanting. These studies have provided a comprehensive description of the development of GABAergic neurons and their receptors in Cherax destructor embryos. The very early expression of GABA-like immunoreactivity, coupled with the early onset of specific GABA binding, strongly indicates that the GABAergic neurons are functional and able to exert an effect on other cells during much of the period of nervous system development in crayfish embryos. These results support the hypothesis that inhibitory neurons may play an important role as regulators of the overall process of assembly and maturation of the nervous system and provide a substantial basis for future experimental studies in which the specific action of inhibitory neurons on the development of discrete components of the crayfish nervous system may be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide control of large systemic blood vessels of the cane toad, Bufo marinus is provided by nitrergic nerves. However, the involvement of nitrergic nerves in the regulation of small blood vessels has yet to be determined. This study investigated the nitric oxide (NO) control of the mesenteric arteries (MA) of B. marinus. Immunohistochemistry and NADPH-diaphorase histochemistry demonstrated a dense plexus of nitrergic nerves in the MA of B. marinus. MAs (~ 500–700µm in diameter) were mounted in a myograph and placed under an initial tension equivalent to their normal diameter. MAs were pre-constricted with the thromboxane A2 mimetic, U46619, prior to the addition of putative, vasodilatory chemicals. Acetylcholine caused a vasodilation that was endothelium-independent, because removal of the endothelium had no effect on the dilation. The response to acetylcholine was blocked by the NOS inhibitor, L-NNA, demonstrating that the effect was NO-dependent. Interestingly, nicotine also caused a dilation that was not affected by removal of the endothelium, but was significantly inhibited by L-NNA and the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8–37). These findings indicate that the MA of B. marinus are controlled by NO released from nitrergic nerves. In addition, a component of the response to applied nicotine appears to be mediated CGRP, which is probably released from sensory nerves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the nature of previous termvasodilator mechanismsnext term in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3×10−4 M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, Image -NNA (10−4 M), nor the soluble guanylyl cyclase inhibitor, ODQ (10−5 M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition, indomethacin (10−5 M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas, nitric oxide, plays a critical role in the control of the cardiovascular system of animals, and in particular blood pressure. This thesis demonstrated unique mechanisms by which nitric oxide regulates the blood vessels of various animals, which will alter our understanding of vascular regulation by peripheral nerves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses.

The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients.

Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic ‘co-morbidity’ perhaps underlies the clinical concordance.

Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of Devil Facial Tumour Disease (DFTD), a highly contagious cancer, is driving Tasmanian devils (Sarcophilus harrisii) to extinction. The cancer is a genetically and chromosomally stable clonal cell line which is transmitted by biting during social interactions. In the present study, we explore the Devil Facial Tumour (DFT) epigenome and the genes involved in DNA methylation homeostasis. We show that tumour cells have similar levels of methylation to peripheral nerves, the tissue from which DFTD originated. We did not observe any strain or region-specific epimutations. However, we revealed a significant increase in hypomethylation in DFT samples over time (p < 0.0001). We propose that loss of methylation is not because of a maintenance deficiency, as an upregulation of DNA methyltransferase 1 gene was observed in tumours compared with nerves (p < 0.005). Instead, we believe that loss of methylation is owing to active demethylation, supported by the temporal increase in MBD2 and MBD4 (p < 0.001). The implications of these changes on disease phenotypes need to be explored. Our work shows that DFTD should not be treated as a static entity, but rather as an evolving parasite with epigenetic plasticity. Understanding the role of epimutations in the evolution of this parasitic cancer will provide unique insights into the role of epigenetic plasticity in cancer evolution and progression in traditional cancers that arise and die with their hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.