99 resultados para Nanofiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Randomly orientated electrospun poly(vinylidene fluoride) nanofiber membranes were directly used as active layers to make mechanical-to-electrical energy conversion devices. Without any extra poling treatment, the device can generate high electrical outputs upon receiving a mechanical impact. The device also showed long-term working stability and ability to drive electronic devices. Such a nanofiber membrane device may serve as a simple but efficient energy source for self-powered electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, carbon nanofibers were prepared by pyrolysis of freeze-dried cellulose nanofiber and the effect of pyrolysis conditions on the properties of carbon nanofiber was studied. SEM analysis revealed that slow heating rates below 400oC are critical to maintain the fibrous morphology after carbonization. The present study demonstrated the possibility of producing carbon nanofibers of ≤ 30 nm in diameter by a simple and scalable method.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the formation of polystyrene (PS) nanofibers during electrospinning process was investigated using a simple coagulation method. The fiber diameter, bead size and bead density of the PS nanofibers electrospun from the solutions with three different PS concentrations were studied. It revealed that the initial stage of electrospinning was responsible for fiber thinning, while the later stage is responsible for improving the fiber uniformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanofibers (NFs) with different phases such as amorphous, anatase, mixed anatase?rutile, and rutile have been prepared by combining the electrospinning technique with the subsequent process of heat treatment or acidic-dissolution method. The obtained NFs are characterized by a Fourier transform infrared spectrometer (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption?desorption isotherm measurements. Phase structure effects of electrospun TiO2 NFs on As(III) adsorption behaviors have been investigated. The results showed a significant effect of the phase structures of TiO2 NFs on As(III) adsorption rates and capacities. Amorphous TiO2 NFs have the highest As(III) adsorption rate and capacity in the investigated samples, which can be attributed to its higher surface area and porous volume. This research provides a simple and low-cost method for phasecontrolled fabrication of TiO2 NFs and application for effective removal of arsenic from aqueous solution.