19 resultados para NICKEL HYBRIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography–mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and l-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted liquid chromatography–mass spectrometry (LC–MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography–mass spectrometry (GC–MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid = 1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf material from nine Ni hyperaccumulating species was collected in New Caledonia: Homalium kanaliense (Vieill.) Briq., Casearia silvana Schltr, Geissois hirsuta Brongn. & Gris, Hybanthus austrocaledonicusSeem, Psychotria douarrei (G. Beauvis.) Däniker, Pycnandra acuminata (Pierre ex Baill.) Swenson & Munzinger (syn Sebertia acuminata Pierre ex Baill.), Geissois pruinosa Brongn. & Gris, Homalium deplanchei (Viell) Warb. and Geissois bradfordii (H.C. Hopkins). The elemental concentration was determined by inductively-coupled plasma optical emission spectrometry (ICP-OES) and from these results it was foundthat the species contained Ni concentrations from to 250–28,000 mg/kg dry mass. Gas chromatography mass spectrometry (GC–MS)-based metabolite profiling was then used to analyse leaves of each species.The aim of this study was to target Ni-binding ligands through correlation analysis of the metabolite levels and leaf Ni concentration. Approximately 258 compounds were detected in each sample. As has been observed before, a correlation was found between the citric acid and Ni concentrations in the leaves for all species collected. However, the strongest Ni accumulator, P. douarrei, has been found to contain particularly high concentrations of malonic acid, suggesting an additional storage mechanism for Ni. A size exclusion chromatography separation protocol for the separation of Ni-complexes in P. acuminata sap was also applied to aqueous leaf extracts of each species. A number of metabolites were identified in complexes with Ni including Ni-malonate from P. douarrei. Furthermore, the levels for some metabolites were found to correlate with the leaf Ni concentration. These data show that Ni ions can be bound by a range of small molecules in Ni hyperaccumulation in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance reduced graphene oxide/nickel foam (rGO/NF) composite electrodes for high-performance supercapacitors were prepared by flame-induced reduction of dry graphene oxide (GO) coated on nickel foam. Flame reduction of GO is a facile, feasible and cost-effective reduction technique, which is conducted without the need of any reductant. Most importantly, the rGO obtained by flame reduction showed a typical disordered cross-linking network and randomly distributed pores, which provide accessible routes for fast transportation of ions. It was demonstrated that the rGO/NF electrode with embedded current collector (NF) exhibited better electrochemical performance than conventional rGO film counterparts, including a high gravimetric specific capacitance of 228.6 F g-1 at a current density of 1 A g-1, excellent rate capability (over 81% retention at 32 A g-1) and high cycling stability with only 5.3% capacitance decay over 10,000 cycles of cyclic voltammetry at a ultrahigh scan rate of 1000 mV s-1. This facile method for the fabrication of rGO/NF electrodes could envision enormous potential for high performance energy storage devices.