35 resultados para NI-CU ALLOYS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) have received great attention during the past decade due to their giant magnetic shape memory effect and fast dynamic response. The crystal structure and crystallographic features of two Ni-Mn-Ga alloys were precisely determined in this study. Neutron diffraction measurements show that Ni48Mn30Ga22 has a Heusler austenitic structure at room temperature; its crystal structure changes into a seven-layered martensitic structure when cooled to 243K. Ni53Mn25Ga22 has an I4/mmm martensitic structure at room temperature. Electron backscattered diffraction (EBSD) analyses reveal that there are only two martensitic variants with a misorientation of ~82° around <110> axis in each initial austenite grain in Ni53Mn25Ga22. The investigation on crystal structure and crystallographic features will shed light on the development of high-performance FSMAs with optimal properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of rapid solidification processes such as direct strip casting (DSC) is a good way to refine the Fe-intermetallics and decrease their detrimental effects. DSC creates out-ofequilibrium supersaturated microstructures. In this work, we explore the precipitation phenomena in direct strip cast Al-Fe and Al-Cu-Fe alloys and related corrosion and mechanical properties. The precipitates are characterised with differential scanning calorimetry and transmission electron microscopy. The corrosion performances are evaluated with immersion tests and weight loss measurements and the yield strength and ductility are estimated with tensile tests. A strong correlation between the microstructure and the bulk properties is revealed with a significant improvement of properties of DSC alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work is part I of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile test results are reported for the common wrought alloy AZ31. These data are employed in conjunction with a simple constitutive model to argue that View the MathML source twinning (which gives extension along the c-axis) can increase the uniform elongation in tensile tests. This effect appears to be similar to that seen in Ti, Zr and Cu–Si and in the so called TWIP phenomenon in steel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vickers indentations were carried out on an anneal-introduced partially crystallized Zr41Ti14Cu12.5 Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in this samplewas investigated and compared to the as-cast, aswell as the structurally relaxed counterparts. The results indicate that the plastic deformation in the partially crystallized BMG was accommodated by the semi-circular (primary) and radial (secondary) shear bands. A full crack or flake that was produced due to the spring back during the load removal was observed. The shear band density in the annealed alloy which was dispersed with crystalliteswas significantly lower than that of the as-cast alloy. The difference of the shear band features among the three kinds of alloy status, i.e., partially crystallized, structurally relaxed and as-cast alloys was discussed in terms of the free volume in the BMGs and the characteristics of nano-composites. It has been demonstrated that the plasticity for the three statuses of alloys queues in the descending order as the as-cast, annealed with partial crystallization, and annealed without crystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous Ti-50.5Ni shape memory alloys with different porosities were produced using a space-holder sintering method. A new Ni-free Ti-based shape memory alloy, Ti-18Nb-5Mo-5Sn, was developed for potential biomedical applications, and a novel one-step hydrothermal process was applied to produce hydroxyapatite coatings on the surface of Ti alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared two potential model alloys, 304 stainless steel and Ni-30wt.%Fe, to study the behaviour of austenite during the thermo-mechanical processing of steel. The deformation behaviour as well as the textural and microstructural evolution was characterised in detail over a wide range of deformation conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarizes some of our recent results on crystal structure, microstructure, orientation relationship between martensitic variants and crystallographic features of martensitic transformation in Ni-Mn-Ga FSMAs. It was shown that Ni53Mn25Ga22 has a tetragonal I4/mmm martensitic structure at room temperature. The neighboring martensitic variants in Ni53Mn25Ga22 have a compound twinning relationship with the twinning elements K1={112}, K2={11-2}, η1=<11-1>, η2=<111>, P={1-10} and s=0.379. The ratio of the relative amounts of twins within the same initial austenite grain is ~1.70. The main orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship. Based on the crystallographic phenomenological theory, the calculated habit plane is {0.690 -0.102 0.716}A (5.95° from {101}A), and the magnitude, direction and shear angle of the macroscopic transformation shear are 0.121, <-0.709 0.105 0.698>A (6.04° from <-101>A) and 6.88°, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance Rct of NiCo2O4 are 6.8 and 63.5 Ω, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Ω). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g−1 was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g−1 at 1 C, 2 C, 6 C 50 C and 110 C, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.