26 resultados para Muscle fiber


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review describes several factors involved in regulating skeletal muscle creatine uptake and total creatine content. Skeletal muscle total creatine content increases with oral creatine supplementation, although the response is variable. Factors that may account for this variation are carbohydrate intake, physical activity, training status, and possibly fiber type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin A transgene (CnA) was overexpressed in skeletal muscles of mdx (mdx CnA*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnA* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnA* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnA* than mdx mice. In the diaphragm, despite a slower phenotype and a 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnA* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the β2-adrenoceptor agonist (β2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung transplant recipients (LTx) exhibit marked peripheral limitations to exercise. We investigated whether skeletal muscle Ca2+ and K+ regulation might be abnormal in eight LTx and eight healthy controls. Peak oxygen consumption and arterialized venous plasma [K+] (where brackets denote concentration) were measured during incremental exercise. Vastus lateralis muscle was biopsied at rest and analyzed for sarcoplasmic reticulum Ca2+ release, Ca2+ uptake, and Ca2+-ATPase activity rates; fiber composition; Na+-K+-ATPase (K+-stimulated 3-O-methylfluorescein phosphatase) activity and content ([3H]ouabain binding sites); as well as for [H+] and H+-buffering capacity. Peak oxygen consumption was 47% less in LTx (P < 0.05). LTx had lower Ca2+ release (34%), Ca2+ uptake (31%), and Ca2+-ATPase activity (25%) than controls (P < 0.05), despite their higher type II fiber proportion (LTx, 75.0 ± 5.8%; controls, 43.5 ± 2.1%). Muscle [H+] was elevated in LTx (P < 0.01), but buffering capacity was similar to controls. Muscle 3-O-methylfluorescein phosphatase activity was 31% higher in LTx (P < 0.05), but [3H]ouabain binding content did not differ significantly. However, during exercise, the rise in plasma [K+]-to-work ratio was 2.6-fold greater in LTx (P < 0.05), indicating impaired K+ regulation. Thus grossly subnormal muscle calcium regulation, with impaired potassium regulation, may contribute to poor muscular performance in LTx.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : We sought to determine whether skeletal muscle oxidative capacity, fiber type proportions, and fiber size, capillary density or muscle mass might explain the impaired exercise tolerance in chronic heart failure (CHF). Previous studies are equivocal regarding the maladaptations that occur in the skeletal muscle of patients with CHF and their role in the observed exercise intolerance.

Methods and results :
Total body O2 uptake (VO2peak) was determined in 14 CHF patients and 8 healthy sedentary similar-age controls. Muscle samples were analyzed for mitochondrial adenosine triphosphate (ATP) production rate (MAPR), oxidative and glycolytic enzyme activity, fiber size and type, and capillary density. CHF patients demonstrated a lower VO2peak (15.1±1.1 versus 28.1±2.3 mL·kg−1·min−1, P<.001) and capillary to fiber ratio (1.09±0.05 versus 1.40±0.04; P<.001) when compared with controls. However, there was no difference in capillary density (capillaries per square millimeter) across any of the fiber types. Measurements of MAPR and oxidative enzyme activity suggested no difference in muscle oxidative capacity between the groups.

Conclusions : Neither reductions in muscle oxidative capacity nor capillary density appear to be the cause of exercise limitation in this cohort of patients. Therefore, we hypothesize that the low VO2peak observed in CHF patients may be the result of fiber atrophy and possibly impaired activation of oxidative phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition from fetal to postnatal life involves clearance of liquid from the lung and airways, and rapid formation of a functional residual capacity. Despite the importance of the diaphragm in this process, the impact of birth on the mechanical and functional activity of its muscle fibers is not known. This study determined the contractile characteristics of individual “skinned” diaphragm fibers from 70 days (0.47) gestation to after birth in sheep. Based on differential sensitivity to the divalent ions calcium (Ca2+) and strontium (Sr2+), all fibers in the fetal diaphragm were classified as “fast,” whereas fibers from the adult sheep diaphragm exhibited a “hybrid” phenotype where both “fast” and “slow” characteristics were present within each single fiber. Transition to the hybrid phenotype occurred at birth, was evident after only 40 min of spontaneous breathing, and could be induced by simple mechanical stretch of diaphragm fibers from near-term fetuses (∼147 days gestation). Both physical stretch of isolated fibers, and mechanical ventilation of the fetal diaphragm in situ, significantly increased sensitivity to Ca2+ and Sr2+, maximum force generating capacity, and decreased passive tension in near-term and preterm fetuses; however, only fibers from near-term fetuses showed a complete transition to a “hybrid” activation profile. These findings suggest that stretch associated with the transition from a liquid to air-filled lung at birth induces physical changes of proteins determining the activation and elastic properties of the diaphragm. These changes may allow the diaphragm to meet the increased mechanical demands of breathing immediately after birth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel biosynthetic platforms supporting ex vivo growth of partially differentiated muscle cells in an aligned linear orientation that is consistent with the structural requirements of muscle tissue are described. These platforms consist of biodegradable polymer fibers spatially aligned on a conducting polymer substrate. Long multinucleated myotubes are formed from differentiation of adherent myoblasts, which align longitudinally to the fiber axis to form linear cell-seeded biosynthetic fiber constructs. The biodegradable polymer fibers bearing undifferentiated myoblasts can be detached from the substrate following culture. The ability to remove the muscle cell-seeded polymer fibers when required provides the means to use the biodegradable fibers as linear muscle-seeded scaffold components suitable for in vivo implantation into muscle. These fibers are shown to promote differentiation of muscle cells in a highly organized linear unbranched format in vitro and thereby potentially facilitate more stable integration into recipient tissue, providing structural support and mechanical protection for the donor cells. In addition, the conducting substrate on which the fibers are placed provides the potential to develop electrical stimulation paradigms for optimizing the ex vivo growth and synchronization of muscle cells on the biodegradable fibers prior to implantation into diseased or damaged muscle tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the acute effects of metformin on fatty acid (FA) metabolism in oxidative soleus (SOL) and glycolytic epitrochlearis (EPT) rodent muscle. SOL and EPT were incubated for either 30 or 180 min in the absence or presence of 2 mM metformin and with or without insulin (10 mU/ml). Metformin did not alter basal FA metabolism but countered the effects of insulin on FA oxidation and incorporation into triacylglyerol (TAG). Specifically, metformin prevented the insulin-induced suppression of FA oxidation in SOL but did not alter FA incorporation into lipid pools. In contrast, in EPT metformin blunted the incorporation of FA into TAG when insulin was present but did not alter FA oxidation. In SOL, metformin resulted in a 50% increase in AMP-activated protein kinase α2 activity and prevented the insulin-induced increase in malonyl-CoA content. In both fiber types, basal and insulin-stimulated glucose oxidation were not significantly altered by metformin. All effects were similar regardless of whether they were measured after 30 or 180 min. Because increased muscle lipid storage and impaired FA oxidation have been associated with insulin resistance in this tissue, the ability of metformin to reverse these abnormalities in muscle FA metabolism may be a part of the mechanism by which metformin improves glucose clearance and insulin sensitivity. The present data also suggest that increased glucose clearance is not due to its enhanced subsequent oxidation. Additional studies are warranted to determine whether chronic metformin treatment has similar effects on muscle FA metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular factors targeted by androgens and estrogens on muscle mass are not fully understood. The current study aimed to explore gene and protein expression of Atrogin-1, MuRF1, and myostatin in an androgen deprivation-induced muscle atrophy model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel fibrous conduit consisting of well-aligned nanofibers with longitudinal nanogrooves on the fiber surface was prepared by electrospinning and was subjected to an in vivo nerve regeneration study on rats using a sciatic nerve injury model. For comparison, a fibrous conduit having a similar fiber alignment structure without surface groove and an autograft were also conducted in the same test. The electrophysiological, walking track, gastrocnemius muscle, triple-immunofluorescence, and immunohistological analyses indicated that grooved fibers effectively improved sciatic nerve regeneration. This is mainly attributed to the highly ordered secondary structure formed by surface grooves and an increase in the specific surface area. Fibrous conduits made of longitudinally aligned nanofibers with longitudinal nanogrooves on the fiber surface may offer a new nerve guidance conduit for peripheral nerve repair and regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40-80%). Moreover, AAV1-Perm1-transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.-Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.