42 resultados para Microbial Viability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactoferrin (Lf) is present in milk and gland secretions and serve as an antimicrobial function. Insufficient amounts of Lf in some secretions also appear to correlate with certain health problems. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Lf also inhibits several species of fungi and certain parasites. This review covers the role of Lf in clearing the parasitic infections. The mechanism by which lactoferrin inhibits some parasites may be via stimulation of the process of phagocytosis, whereby immune cells engulf and digest foreign organisms. Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. In this review, we also discussed the role of Lf in cervical infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the viability of commercial tomato production using the Autopot growing system in Australia. The Autopot system is a relatively new hydroponic production system technology that is being introduced onto the market in competition with traditional systems. Although commercial tomato production was found to be significantly more water and nutrient efficient in the Autopot system than in a traditional open system, yields were significantly lower. Financial modelling shows that tomato production in this system would not be commercially viable in Australia for a typical tomato growing venture under current conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a series of fibrous membranes made from cellulose acetate (CA) and polyester urethane (PEU) by co-electrospining or blend-electrospining were evaluated for drug release kinetics, in vitro anti-microbial activity and in vivo would healing performance when used as wound dressings. To stop common clinical infections, an antibacterial agent, Polyhexamethylene Biguanide (PHMB) was incorporated into e-spun fibres. The presence of CA in the wound healing membrane was found to improve hydrophilicity and permeability to air and moisture. The in vivo tests indicated that the addition of PHMB and CA considerably improved the wound healing efficiency. CA fibres became slightly swollen upon contacting with the wound exudates. It can not only speed up the liquid evaporation but also create a moisture environment for wound recovery. The drug release dynamics of membranes was controlled by the structure of membranes and component rations within membranes. The lower ration of CA:PEU retained the sound mechanical properties of membranes, and also reduced the boost release effectively and slowed down diffusion of antibacterial agent during in vitro tests. The controlled-diffusion membranes exert long-term anti-infective effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the working horses' in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst's preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field of non-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymers can be produced through a variety of mechanisms. They can be derived from microbial systems, extracted from higher organisms such as plants, or synthesized chemically from basic biological building blocks. A wide range of emerging applications rely on all three of these production techniques. In recent years, considerable attention has been given to biopolymers produced by microbes. It is on the microbial level where the tools of genetic engineering can be most readily applied. A number of novel materials are now being developed or introduced into the market. Biopolymers are being developed for use as medical materials, packaging, cosmetics, food additives, clothing fabrics, water treatment chemicals, industrial plastics, absorbents, biosensors, and even data storage elements. This review identifies the possible commercial applications and describes the various methods of production of microbial biopolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomolecular delivery system consisting of a novel alginate enclosed, chitosan coated ceramic antimicrobial nanocarrier containing lactoferrin (AEC-CP-Fe-bLf) and development of this multifunctional bovine iron saturated lactoferrin nanotechnology based drug delivery systems for finding treatment to parasitic and bacterial diseases was prepared. Since lactoferrin is a naturally occurring molecule its clinical application would be welcome.