35 resultados para Magnetite. Polyol. Nanoparticles. Superparamagnetic and thermal decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis was made of the Charles Sturt University Academic Office building at Thurgoona from a thermal comfort and energy viewpoint. It was found that the offices did not meet low energy criteria and some were uncomfortable for 30% to 85% of occupied hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal stability of electrochemically prepared polypyrrole (PPy) films with p-toluene sulfonate (pTS) or perchlorate (CIOP4) counter ion (PPy/pTS and PPy/ClO4) is improved by simple treatment with aqueous sulfuric acid, sodium sulfate or sodium bisulfate. The degree of stabilization achieved depends on the solution, temperature and duration of treatment. PPy/pTS is easily stabilized and thick films (43μm) retain 90 % of the initial conductivity after long period (300 h) at 150 °C, while thinner films (12 μm) retain slightly less (70 %). A model for the conductivity decay has been proposed. Although the mechanism for improved stability is not yet clear it is apparent that the level of ion exchange and the original polymer microstructure are important. The early stages of ion exchange are not symmetrical and diffusion is facilitated at the electrode side of the film. Furthermore, X-ray diffraction shows no evidence of morphological change after treatment of thick PPy/pTS but in thin PPy/pTS and PPy/ClO4 films an additional peak is indicative of more ordered structure following treatment. These observation may imply that there is a higher density of crosslinks and branching at the growth side than at the electrode side of the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PET fabric is coated with conducting polypyrrole (PPy) by oxidative polymerization from an aqueous solution of Py using ferric chloride hexahydrate (FeCl3) as oxidant and p-toluene sulphonate (pTSA) as dopant. The optimum concentrations for Py, FeCl3 and pTSA were found to be 0.11, 0.857 and 0.077 mol/l respectively, which yielded a conductive fabrics with resistivity as low as 72 Ω/sq. PPy fabric gained resistivity less than one order of magnitude when aged for 18 months at room temperature. The stabilizing effect of the dopant pTSA against thermal degradation was demonstrated; the undoped samples reached resistivity of around 40 kΩ, whereas doped samples reached less than 2 kΩ at the same temperature and time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ prepared zinc disorbate (ZDS) in natural rubber (NR) by the reaction of zinc oxide and sorbic acid was used to reinforce the dicumyl peroxide-cured NR vulcanizate. The changes in mechanical properties of NR vulcanizates after ageing and were determined and the structures and thermal stability of vulcanizates were also analyzed using scanning electron microscope and thermal gravimetric analyzer. The change ratios in tensile strength and elongation at break of NR vulcanizate with theoretic formation of ZDS of 21phr can be increased to -33 from -44 and -27 from -38 after ageing and the initial weight loss temperature of NR vulcanizate can be increased for about 7°C as compared to un-reinforced NR vulcanizate, indicating that the antioxidative behavior and thermal stability of NR can be improved significantly with theoretic formation of ZDS of 21phr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable cities should be livable cities where people from different backgrounds and with different aspirations can meet and interact with each other. Public places being the urban stages where the social interactions happen are considered important parts of cities (Thompson, 2002; Varna, 2009). They can contribute to enhance the quality of life within cities, or contrarily increase isolation and social exclusion (Lo et al., 2003). As a consequence of globalization and the development of global cities, the level of international migration has been growing in the last decades creating a plurality of different cultures in global cities and inspiring in such cities a multicultural nature (O'Byrne, 1997; Short and Kim, 1999; Hawkins, 2006). This created new challenges in urban planning or the management of the coexistence of different people that are having different characteristics that shape their unique identity and needs in the shared spaces (Sandercock, 2004). Ideally, in order to invite a diversity of users, urban outdoor places should provide significant functional and physical qualities, and accessibility to them, which induce the fulfillment of physiological, psychological and social needs (Carr et al., 1992; Jacobs, 1993; Sandholz, 2007). Users’ state of comfort as stated by researchers gives a good indication for how successful is the public outdoor places (Rosheidat et al., 2008; Kwong et al., 2009; Aljawabra and Nikolopoulou, 2010). In order to create a successful open space usable by all members of a community, urban designers need to satisfy their comfort needs in its wider meaning according to a variety of different ages, genders and cultural backgrounds (Knez and Thorsson, 2006; Thorsson et al., 2007). The main aim of the research is to examine the influence of culture and environmental attitude on participants’ thermal requirements in outdoor public places. The paper explores the variables that constitute a successful multicultural design, issues of cultural complexity, and the measuring comfort in specific outdoor public place. Qualitative analysis of a case study provides the main research methodology of the research. The conclusion will provide a set of criteria that guide future design and development of a successful shared outdoor public places.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT), a novel surface severe plastic deformation method, was carried out for titanium (Ti) to create a gradient-structured Ti (SMAT Ti). The tribological behaviour was studied under different loads and dry sliding conditions. The results showed that the deformation layer of SMAT Ti was about 160 lm. The friction and wear results showed that the wear resistance of SMAT Ti was enhanced compared to the coarse-grained (CG) counterpart. SMAT Ti showed abrasive wear under 1 and 5 N, and exhibited abrasive and adhesive wear under 2 N. While CG Ti showed abrasive and adhesive wear under 1–2 N, and exhibited abrasive wear under 5 N for the work hardening effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe the surface modification of porous polyethylene by the adsorption of polyelectrolyte mutilayers on plasma‐activated polyethylene surfaces. We use the migration rates of deionized water as an effective alternative to contact angle measurements in order to probe the interfacial energy of the modified surface. The newly acquired surface properties that result from the surface modification are monitored with respect to several key chemical and environmental variables. These variables were chosen so that they will reflect some of the common handling procedures in a laboratory or health care environments, such as exposure to solvents of different pH and polarities, and fluctuations of ambient temperature over an extended period, i.e., “shelf‐life” duration. The stability of these surface properties of the modified membranes is a fundamental requirement for their potential use in a variety of applications involving lateral flow and binding media for bio‐assays. In this paper, we show that a membrane modified by a polyelectrolyte monolayer is more stable than a membrane that has undergone plasma activation alone, while a membrane modified by a polyelectrolyte bilayer exhibits retention of the enhanced surface hydrophilic properties under various conditions and over a long period of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we focus on face appearance-based biometrics. The cheap and readily available hardware used to acquire data, their non-invasiveness and the ease of employing them from a distance and without the awareness of the user, are just some of the reasons why these continue to be of great practical interest. However, a number of research challenges remain. Specifically, face biometrics have traditionally focused on images acquired in the visible light spectrum and these are greatly affected by such extrinsic factors such as the illumination, camera angle (or, equivalently, head pose) and occlusion. In practice, the effects of changing pose are usually least problematic and can oftentimes be overcome by acquiring data over a time period, e.g., by tracking a face in a surveillance video. Consequently, image sequence or image set matching has recently gained a lot of attention in the literature [137–139] and is the paradigm adopted in this chapter as well. In other words, we assume that the training image set for each individual contains some variability in pose, but is not obtained in scripted conditions or in controlled illumination. In contrast, illumination is much more difficult to deal with: the illumination setup is in most cases not practical to control and its physics is difficult to accurately model. Thermal spectrum imagery is useful in this regard as it is virtually insensitive to illumination changes, as illustrated in Fig. 6.1. On the other hand, it lacks much of the individual, discriminating facial detail contained in visual images. In this sense, the two modalities can be seen as complementing each other. The key idea behind the system presented in this chapter is that robustness to extreme illumination changes can be achieved by fusing the two. This paradigm will further prove useful when we consider the difficulty of recognition in the presence of occlusion caused by prescription glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition algorithms that use data obtained by imaging faces in the thermal spectrum are promising in achieving invariance to extreme illumination changes that are often present in practice. In this paper we analyze the performance of a recently proposed face recognition algorithm that combines visual and thermal modalities by decision level fusion. We examine (i) the effects of the proposed data preprocessing in each domain, (ii) the contribution to improved recognition of different types of features, (iii) the importance of prescription glasses detection, in the context of both 1-to-N and 1-to-1 matching (recognition vs. verification performance). Finally, we discuss the significance of our results and, in particular, identify a number of limitations of the current state-of-the-art and propose promising directions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the high strength and stiffness of polymer nanocomposites, they usually display lower deformability and toughness relative to their matrices. Spider silk features exceptionally high stiffness and toughness via the hierarchical architecture based on hydrogen-bond (H-bond) assembly. Inspired by this intriguing phenomenon, we here exploit melamine (MA) to reinforce poly(vinyl alcohol) (PVA) via H-bond self-assembly at a molecular level. Our results have shown that due to the formation of physical cross-link network based on H-bond assembly between MA and PVA, yield strength, Young’s modulus, extensibility, and toughness of PVA are improved by 22, 25, 144, and 200% with 1.0 wt % MA, respectively. Moreover, presence of MA can enhance the thermal stability of PVA to a great extent, even exceeding some nanofillers (e.g., graphene). This work provides a facile method to improve the mechanical properties of polymers via H-bond self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3]·7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single-crystal X-ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3]·7H2O was investigated by solid-state NMR and FTIR spectroscopy, TG and DTA measurements.