24 resultados para MARKOV CHAIN


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing is becoming popular as the next infrastructure of computing platform. Despite the promising model and hype surrounding, security has become the major concern that people hesitate to transfer their applications to clouds. Concretely, cloud platform is under numerous attacks. As a result, it is definitely expected to establish a firewall to protect cloud from these attacks. However, setting up a centralized firewall for a whole cloud data center is infeasible from both performance and financial aspects. In this paper, we propose a decentralized cloud firewall framework for individual cloud customers. We investigate how to dynamically allocate resources to optimize resources provisioning cost, while satisfying QoS requirement specified by individual customers simultaneously. Moreover, we establish novel queuing theory based model M/Geo/1 and M/Geo/m for quantitative system analysis, where the service times follow a geometric distribution. By employing Z-transform and embedded Markov chain techniques, we obtain a closed-form expression of mean packet response time. Through extensive simulations and experiments, we conclude that an M/Geo/1 model reflects the cloud firewall real system much better than a traditional M/M/1 model. Our numerical results also indicate that we are able to set up cloud firewall with affordable cost to cloud customers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is concerned with the delay-range-dependent stability analysis for neural networks with time-varying delay and Markovian jumping parameters. The time-varying delay is assumed to lie in an interval of lower and upper bounds. The Markovian jumping parameters are introduced in delayed neural networks, which are modeled in a continuous-time along with finite-state Markov chain. Moreover, the sufficient condition is derived in terms of linear matrix inequalities based on appropriate Lyapunov-Krasovskii functionals and stochastic stability theory, which guarantees the globally asymptotic stable condition in the mean square. Finally, a numerical example is provided to validate the effectiveness of the proposed conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we study a challenging problem of mining data generating rules and state transforming rules (i.e., semantics) underneath multiple correlated time series streams. A novel Correlation field-based Semantics Learning Framework (CfSLF) is proposed to learn the semantic. In the framework, we use Hidden Markov Random Field (HMRF) method to model relationship between latent states and observations in multiple correlated time series to learn data generating rules. The transforming rules are learned from corresponding latent state sequence of multiple time series based on Markov chain character. The reusable semantics learned by CfSLF can be fed into various analysis tools, such as prediction or anomaly detection. Moreover, we present two algorithms based on the semantics, which can later be applied to next-n step prediction and anomaly detection. Experiments on real world data sets demonstrate the efficiency and effectiveness of the proposed method. © Springer-Verlag 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the problem of stochastic stability analysis of discrete-time two-dimensional (2-D) Markovian jump systems (MJSs) described by the Roesser model with interval time-varying delays. The transition probabilities of the jumping process/Markov chain are assumed to be uncertain, that is, they are not exactly known but can be estimated. A Lyapunov-like scheme is first extended to 2-D MJSs with delays. Based on some novel 2-D summation inequalities proposed in this paper, delay-dependent stochastic stability conditions are derived in terms of linear matrix inequalities (LMIs) which can be computationally solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel in-cylinder pressure method for determining ignition delay has been proposed and demonstrated. This method proposes a new Bayesian statistical model to resolve the start of combustion, defined as being the point at which the band-pass in-cylinder pressure deviates from background noise and the combustion resonance begins. Further, it is demonstrated that this method is still accurate in situations where there is noise present. The start of combustion can be resolved for each cycle without the need for ad hoc methods such as cycle averaging. Therefore, this method allows for analysis of consecutive cycles and inter-cycle variability studies. Ignition delay obtained by this method and by the net rate of heat release have been shown to give good agreement. However, the use of combustion resonance to determine the start of combustion is preferable over the net rate of heat release method because it does not rely on knowledge of heat losses and will still function accurately in the presence of noise. Results for a six-cylinder turbo-charged common-rail diesel engine run with neat diesel fuel at full, three quarters and half load have been presented. Under these conditions the ignition delay was shown to increase as the load was decreased with a significant increase in ignition delay at half load, when compared with three quarter and full loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For clinical use, in electrocardiogram (ECG) signal analysis it is important to detect not only the centre of the P wave, the QRS complex and the T wave, but also the time intervals, such as the ST segment. Much research focused entirely on qrs complex detection, via methods such as wavelet transforms, spline fitting and neural networks. However, drawbacks include the false classification of a severe noise spike as a QRS complex, possibly requiring manual editing, or the omission of information contained in other regions of the ECG signal. While some attempts were made to develop algorithms to detect additional signal characteristics, such as P and T waves, the reported success rates are subject to change from person-to-person and beat-to-beat. To address this variability we propose the use of Markov-chain Monte Carlo statistical modelling to extract the key features of an ECG signal and we report on a feasibility study to investigate the utility of the approach. The modelling approach is examined with reference to a realistic computer generated ECG signal, where details such as wave morphology and noise levels are variable.