48 resultados para Li, Jiang


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the influence of triethyl and tributyl phosphite (TEP and TBP) additives on the electrochemical performance of lithium-ion cells. The cell performance of the TEP- and TBP-containing electrolytes was evaluated by cyclic voltammetry, thermogravimetric analysis, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The flammability of the electrolytes was also investigated by measuring the self-extinguishing time of the electrolytes. The results showed that the TEP and TBP additives suppressed the flammability of the electrolyte, with a significant improvement in cell performance observed for the TEP additive. In addition, TEP and TBP additives improved the thermal stability of the battery and its electrochemical cell performance. Overall, 5 wt% TEP and TBP can be used as a flame-retarding additive to improve the cell performance of Li-ion batteries due to the decrease in cell impedance and SEI formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the properties of 1 wt.% vinylene carbonate, vinyl ethylene carbonate, and diphenyloctyl phosphate additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. The additive electrolytes were dominant both in surface formation and internal resistance. In particular, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that diphenyloctyl phosphate is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form onedimensional polymeric adsorbent/conducting polymer core−shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH3 can facilitate the mass diffusion of NH3 through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH3 (20 ppb) at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance Rct of NiCo2O4 are 6.8 and 63.5 Ω, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Ω). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g−1 was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g−1 at 1 C, 2 C, 6 C 50 C and 110 C, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring high performance cathode materials is essential to realize the adoption of Li-ion batteries for application in electric vehicles and hybrid electric vehicles. FeF3, as a typical iron-based fluoride, has been attracting considerable interest due to both the high electromotive force value of 2.7 V and the high theoretical capacity of 237 mA h g_1 (1e_ transfer). In this study, we report a facile lowtemperature solution phase approach for synthesis of uniform iron fluoride nanocrystals on reduced graphene sheets stably suspended in ethanol solution. The resulting hybrid of iron fluoride nanocrystals and graphene sheets showed high specific capacity and high rate performance for iron fluoride type cathode materials. High stable specific capacity of about 210 mA h g_1 at a current density of 0.2 C was achieved, which is much higher than that of LiFePO4 cathode material. Notably, these iron fluoride/ nanocomposite cathode materials demonstrated superior rate capability, with discharge capacities of 176, 145 and 113 mA h g_1 at 1, 2 and 5 C, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the exploration of a synergic effect within n-type inorganic–p-type organic nanohybrids in gas sensors. One-dimensional (1D) n-type SnO2–p-type PPy composite nanofibers were prepared by combining the electrospinning and polymerization techniques, and taken as models to explore the synergic effect during the sensing measurement. Outstanding sensing performances, such as large responses and low detection limits (20 ppb for ammonia) were obtained. A plausible mechanism for the synergic effect was established by introducing p–n junction theory to the systems. Moreover, interfacial metal (Ag) nanoparticles were introduced into the n-type SnO2–p-type PPy nano-hybrids to further supplement and verify our theory. The generality of this mechanism was further verified using TiO2–PPy and TiO2–Au–PPy nano-hybrids. We believe that our results can construct a powerful platform to better understand the relationship between the microstructures and their gas sensing performances.