79 resultados para Large power system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system stabilizers (PSSs) are extensively used to ensure the dynamic stability of power systems through the modulation of excitation signals supplied to synchronous generators. This paper presents a comparative study of two different PSSs: STAB1 and IEEEST. The stabilizers are designed for the linearized model of a single machine infinite bus (SMIB) system with different loads. Both time-and frequency-domain simulations are carried out to investigate the performance of these stabilizers. For all PSSs, the time-domain simulations are performed by applying a three-phase short-circuit fault at the terminal of the synchronous generator. These simulation results are compared against the open-loop characteristics of the SMIB system where no PSS is implemented. Simulation results demonstrate that the speed-fed PSS provides more damping as compared to frequency- and power-fed stabilizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a nonlinear robust adaptive excitation controller design for a simple power system model where a synchronous generator is connected to an infinite bus. The proposed controller is designed to obtain the adaption laws for estimating critical parameters of synchronous generators which are considered as unknown while providing the robustness against the bounded external disturbances. The convergence of different physical quantities of a single machine infinite bus (SMIB) system, with the proposed control scheme, is ensured through the negative definiteness of the derivative of Lyapunov functions. The effects of external disturbances are considered during formulation of Lyapunov function and thus, the proposed excitation controller can ensure the stability of the SMIB system under the variation of critical parameters as well as external disturbances including noises. Finally, the performance of the proposed scheme is investigated with the inclusion of external disturbances in the SMIB system and its superiority is demonstrated through the comparison with an existing robust adaptive excitation controller. Simulation results show that the proposed scheme provides faster responses of physical quantities than the existing controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) power system with Distributed Generation (DG) plays an important role to provide reliable, secure, and low carbon emission energy supply for communities, in case of any failure or disturbance of energy supply from the main grid. At the same time, DG also contributes to several technical issues in the MG distribution network. Power quality (PQ) issues are one of the main technical challenges when integrating Renewable Energy (RE) sources in MG network. In this paper, the PQ issues like; power variation, voltage deviation, and Total Harmonic Distortion (THD) have been addressed by an impact analysis study on a typical solar PV MG power system in both on-grid and off-grid mode of operation. Analysis results from the study will be helpful in developing an independent MG power system with improved PQ conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load frequency Control (LFC) is used for many years as part of Automatic Generation Control (AGC) in power system around the world. In a mixed power system, it is usual to find an area regulated by hydro generation interconnected to another area regulated by thermal generation or in combination of both. In the following study, performance of AGC for Thermal, Hydro and Thermal turbine based power system is examined, including how frequency bias setting influences AGC responseand inadvertent interchange. Control performance analysis of three area interconnected systems is simulated and studied through Matlab Simulink software. Integral square error and Integral time absolute error has been used as performance criterion. It is shown that integral timeabsolute error (ITAE) as performance index leads to faster optimization of controller gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel operation and control strategy for a renewable hybrid power system for a standalone operation. The proposed hybrid system consists of a wind turbine, a fuel cell, an electrolyzer, a battery storage unit, and a set of loads. The overall control strategy is based on a two-level structure. The top level is the energy management and power regulation system. Depending on wind and load conditions, this system generates reference dynamic operating points to low level individual subsystems. The energy management and power regulation system also controls the load scheduling operation during unfavorable wind conditions under inadequate energy storage in order to avoid a system blackout. Based on the reference dynamic operating points of the individual subsystems, the local controllers control the wind turbine, fuel cell, electrolyzer, and battery storage units. The proposed control system is implemented in MATLAB Simpower software and tested for various wind and load conditions. Results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenal growth in economy experienced in developed countries throughout the 20th century has largely been driven by the availability of conventional energy sources for electricity generation. However, increased concern about fossil fuels and adverse effect of carbon dioxide emission in to atmosphere changed the conventional power system to a viable one by integrating renewable energy sources into the existing system. Among the Renewable Energy (RE) sources, wind energy is one of the fastest growing technologies in reducing the Green House Gas (GHG) emissions in to the atmosphere due to its continuous availability throughout a period. Hence, this paper discusses the performance of a wind-grid connected system in a semi-arid region by conducting a case study. Wilson promontory, one of the best locations for wind generation in Victoria is considered as a case study. Hybrid Optimization Model for Electric Renewable (HOMER) is used as a simulating tool for this analysis. This study also presents the influences of storage system in the proposed Hybrid Power System (HPS) allowing energy to be stored during higher generations or lower load demands. In addition this paper also discusses the major integration issues to facilitate the large scale wind energy into the grid for reliable power generation and distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased concern about global warming coupled with the escalating demand of energy has driven the conventional power system to be more reliable one by integrating Renewable Energies (RE) in to grid. Over the recent years, integration of solar PV forming a gridconnected PV is considered as one of the most promisingtechnologies to the developed countries like Australia to meet the growing demand of energy. This rapid increase in grid connected photovoltaic (PV) systems has made the supply utilities concerned about the drastic effects that have to be considered on the distribution network in particular voltage fluctuations, harmonic distortions and the Power factor for sustainable power generation. However, irrespective of thefact that the utility grid can accommodate the variability of load or irregular solar irradiance, it is essential to study the impact of grid connected PV systems during higher penetration levels as the intermittent nature of solar PV adversely effects the grid characteristics in meeting the load demand. Hence, keeping this in track, this paper examines the grid-connected PV system considering a residential network of Geelong region (38◦.09' S and 144◦.21’ E) and explores the level of impacts considering summer load profile with a change in the level of integrations. Initially, a PV power system network model is developed in Matlab-Simulink environment and the simulations are carried out to explore the impacts of solar PV penetration at low voltage distribution network considering power quality (PQ) issues such as voltage fluctuations, harmonics distortion at different load conditions.