60 resultados para LUMBAR SPINE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The age and developmental stage at which calcium supplementation produces the greatest bone effects remain controversial. We tested the hypothesis that calcium supplementation may improve bone accrual in premenarcheal females. Fifty-one pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic; mean ± SD age, 10.3 ± 1.5 yr) participated in a randomized, single-blind, placebo-controlled trial with one twin of each pair receiving a 1200-mg calcium carbonate (Caltrate) supplement. Areal bone mineral density (aBMD) was measured at baseline and 6, 12, 18 and 24 months. There were no within-pair differences in height, weight, or calcium intake at baseline. Calcium supplementation was associated (P < 0.05) with increased aBMD compared with placebo, adjusted for age, height, and weight at the following time points from baseline: total hip, 6 months (1.9%), 12 months (1.6%), and 18 months (2.4%); lumbar spine, 12 months (1.0%); femoral neck, 6 months (1.9%). Adjusted total body bone mineral content was higher in the calcium group at 6 months (2.0%), 12 months (2.5%), 18 months (4.6%), and 24 months (3.7%), respectively (all P < 0.001). Calcium supplementation was effective in increasing aBMD at regional sites over the first 12–18 months, but these gains were not maintained to 24 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary We examined the independent and combined effects of a multi-component exercise program and calcium–vitamin-D3-fortified milk on bone mineral density (BMD) in older men. Exercise resulted in a 1.8% net gain in femoral neck BMD, but additional calcium–vitamin D3 did not enhance the response in this group of older well-nourished men.

Introduction This 12-month randomised controlled trial assessed whether calcium–vitamin-D3-fortified milk could enhance the effects of a multi-component exercise program on BMD in older men.

Methods Men (n  = 180) aged 50–79 years were randomised into: (1) exercise + fortified milk; (2) exercise; (3) fortified milk; or (4) controls. Exercise consisted of high intensity progressive resistance training with weight-bearing impact exercise. Men assigned to fortified milk consumed 400 mL/day of low fat milk providing an additional 1,000 mg/day calcium and 800 IU/day vitamin D3. Femoral neck (FN), total hip, lumbar spine and trochanter BMD and body composition (DXA), muscle strength 25-hydroxyvitamin D and parathyroid hormone (PTH) were assessed.

Results There were no exercise-by-fortified milk interactions at any skeletal site. Exercise resulted in a 1.8% net gain in FN BMD relative to no-exercise (p < 0.001); lean mass (0.6 kg, p < 0.05) and muscle strength (20–52%, p < 0.001) also increased in response to exercise. For lumbar spine BMD, there was a net 1.4–1.5% increase in all treatment groups relative to controls (all p < 0.01). There were no main effects of fortified milk at any skeletal site.

Conclusion A multi-component community-based exercise program was effective for increasing FN BMD in older men, but additional calcium–vitamin D3 did not enhance the osteogenic response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: In a previous 2-y randomized controlled trial, we showed that calcium- and vitamin D3–fortified milk stopped or slowed bone loss at several clinically relevant skeletal sites in older men.

Objective
: The present study aimed to determine whether the skeletal benefits of the fortified milk were sustained after withdrawal of the supplementation.

Design: One hundred nine men >50 y old who had completed a 2-y fortified milk trial were followed for an additional 18 mo, during which no fortified milk was provided. Bone mineral density (BMD) of the total hip, femoral neck, lumbar spine, and forearm was measured by using dual-energy X-ray absorptiometry.

Results: Comparison of the mean changes from baseline between the groups (adjusted for baseline age, BMD, total calcium intake, and change in weight) showed that the net beneficial effects of fortified milk on femoral neck and ultradistal radius BMD at the end of the intervention (1.8% and 1.5%, respectively; P < 0.01 for both) were sustained at 18-mo follow-up (P < 0.05 for both). The nonsignificant between-group differences at the total hip (0.8%; P = 0.17) also persisted at follow-up (0.7%; P = 0.10), but there were no lasting benefits at the lumbar spine. The average total dietary calcium intake in the milk supplementation group at follow-up approximated recommended amounts for Australian men >50 y old (1000 mg/d) but did not differ significantly from that in the control subjects (1021 versus 890 mg/d).

Conclusion: Supplementation with calcium- and vitamin D3–fortified milk for 2 y may provide some sustained benefits for BMD in older men after withdrawal of supplementation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years.

Design: A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months.

Discussion:
The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice.

Trial registration:
Australian Clinical Trial Register # [ACTRN012605000079640]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running.

Methods
: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N = 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m[middle dot]min-1. Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia.

Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC;P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01).

Conclusion
: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the prevalence of osteoporosis at various sites among Australian women, cross-sectional bone mineral density (BMD) data for adult females was obtained from an age-stratified population-based sample (n = 1494; 20–94 yr) drawn at random from the Barwon Statistical Division, a population characteristic of Australia. Age- and weight- (and for three sites, height) matched reference ranges for BMD at the lumbar spine, proximal femur, forearm, and total body were developed using regression techniques. The cutoff BMD level for osteoporosis at the PA spine was 0.917 g/cm2 and 0.713 g/cm2 at the femoral neck according to the World Health Organization (WHO) guidelines. The upper cutoff level for osteopenia was 1.128 g/cm2 at the PA spine and 0.913 g/cm2 for the femoral neck. The proportion of Australian women categorized as having osteoporosis at the PA spine, femoral neck, or midforearm ranged from 0.9% among those aged 40–44 yr to 87.0% for those older than 79 yr. This study provides reference data representative of the Australian female population. A large proportion of elderly Australian women has osteoporosis according to the WHO guidelines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The database contains the following clinical, questionnaire and socio-demographic data suitable for cross-sectional and longitudinal analyses:
-Body composition: dual-energy x-ray absorptiometry (DXA) measures of the lumbar spine (posterior-anterior projection), proximal femur, whole body and forearm (ultradistal forearm and distal 33%)
-Other clinical assessments: body weight, height, arm span, waist and hip circumferences, blood pressure, visual acuity, muscle strength, functional reach test and timed ‘up-&-go’ test.
-Mental health: Major axis psychiatric disorders diagnosed using a Structured Clinical Interview.
-Blood and urine collections: blood and urine collected after an overnight fast.
-Questionnaires: exposure to disease, use of medications and supplements, diet, mobility, physical activity, sleep, sun exposure, falls and fractures, alcohol and tobacco use, reproductive history, family history of fractures and disease, quality of life, pain, anxiety and depression.
-Socio-demographics: Country of birth, ethnicity, marital status, education, housing and employment status, occupation, socioeconomic Index for Areas (SEIFA) scores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract:
Postmenopausal women on aromatase inhibitors (AI) are at risk of aromatase inhibitor-associated bone loss (AIBL) and fractures.

In 2005 Osteoporosis Australia proposed an algorithm for bisphosphonate intervention. Three hundred and three postmenopausal women with early breast cancer (EBC) were enrolled (osteoporotic, n=25; osteopaenic, n=146; normal bone mineral density (BMD), n=126). Weekly alendronate (70 mg) treatment efficacy as triggered by the algorithm in preventing bone loss was evaluated. All patients received anastrozole (1 mg daily), calcium and vitamin D.

Results:
All osteoporotic patients received alendronate at baseline. Eleven out of the 146 (7.5%) osteopaenic patients commenced alendronate within 18 months of participation and eleven commenced after. One hundred and twenty four out of the 146 (84.9%) osteopaenic patients and all 126 with normal baseline BMD did not trigger the algorithm.

At three years, lumbar spine mean BMD increased (15.6%, p<0.01) in the osteoporotic group. BMD in the osteopaenic group with early intervention significantly increased at three years (6.3%, p=0.02). No significant change was seen in the late intervention group. No change was observed in those with osteopaenia without alendronate.

There was a significant drop in lumbar spine (−5.4%) and hip (−4.5%) mean BMD, in the normal BMD group, none of whom received alendronate.

Fracture data will be presented.

Conclusion:
In postmenopausal women with endocrine-responsive EBC, BMD improved over time when a bisphosphonate is administered with anastrozole in osteoporotic patients using an osteoporosis schedule. Subjects with normal baseline BMD experienced the greatest BMD loss, although none became osteoporotic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Recent work showed an increased risk of cervical and lumbar intervertebral disc (IVD) herniations in astronauts. The European Space Agency asked the authors to advise on the underlying pathophysiology of this increased risk, to identify predisposing factors and possible interventions and to suggest research priorities. METHODS: The authors performed a narrative literature review of the possible mechanisms, and conducted a survey within the team to prioritize research and prevention approaches. RESULTS AND CONCLUSIONS: Based on literature review the most likely cause for lumbar IVD herniations was concluded to be swelling of the IVD in the unloaded condition during spaceflight. For the cervical IVDs, the knowledge base is too limited to postulate a likely mechanism or recommend approaches for prevention. Basic research on the impact of (un)loading on the cervical IVD and translational research is needed. The highest priority prevention approach for the lumbar spine was post-flight care avoiding activities involving spinal flexion, followed by passive spinal loading in spaceflight and exercises to reduce IVD hyper-hydration post-flight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: We investigated whether repeat BMD measurements in clinical populations are useful for fracture risk assessment. We report that repeat BMD measurements are a robust predictor of fracture in clinical populations; this is not affected by preceding BMD change or recent osteoporosis therapy. Introduction: In clinical practice, many patients selectively undergo repeat bone mineral density (BMD) measurements. We investigated whether repeat BMD measurements in clinical populations are useful for fracture risk assessment and whether this is affected by preceding change in BMD or recent osteoporosis therapy. Methods: We identified women and men aged ≥50 years who had a BMD measurement during 1990–2009 from a large clinical BMD database for Manitoba, Canada (n = 50,215). Patient subgroups aged ≥50 years at baseline with repeat BMD measures were identified. Data were linked to an administrative data repository, from which osteoporosis therapy, fracture outcomes, and covariates were extracted. Using Cox proportional hazards models, we assessed covariate-adjusted risk for major osteoporotic fracture (MOF) and hip fracture according to BMD (total hip, lumbar spine, femoral neck) at different time points. Results: Prevalence of osteoporosis therapy increased from 18 % at baseline to 55 % by the fourth measurement. Total hip BMD was predictive of MOF at each time point. In the patient subgroup with two repeat BMD measurements (n = 13,481), MOF prediction with the first and second measurements was similar: adjusted-hazard ratio (HR) per SD 1.45 (95 % CI 1.34–1.56) vs. 1.64 (95 % CI 1.48–1.81), respectively. No differences were seen when the second measurement results were stratified by preceding change in BMD or osteoporosis therapy (both p-interactions >0.2). Similar results were seen for hip fracture prediction and when spine and femoral neck BMD were analyzed. Conclusion: Repeat BMD measurements are a robust predictor of fracture in clinical populations; this is not affected by preceding BMD change or recent osteoporosis therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: The current study aimed to examine the effectiveness of a resistive vibration exercise countermeasure during prolonged bed-rest in preventing lower-limb muscle atrophy. METHODS: 20 male subjects underwent 56-days of bed-rest and were assigned to either an inactive control, or a countermeasure group which performed high-load resistive exercises (including squats, heel raises and toe raises) with whole-body vibration. Magnetic resonance imaging of the lower-limbs was performed at two-weekly intervals. Volume of individual muscles was calculated. RESULTS: Countermeasure exercise reduced atrophy in the triceps surae and the vastii muscles (F>3.0, p<.025). Atrophy of the peroneals, tibialis posterior and toe flexors was less in the countermeasure-subjects, though statistical evidence for this was weak (F

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prolonged bed rest and inactivity is known to cause muscular atrophy with previous research indicating that muscles involved in joint stabilisation are more susceptible. The anterior hip muscles are important for hip joint function and stability but little is known about the effects of prolonged inactivity on their function. This study investigated the effect of prolonged bed rest on the size of the anterior hip muscles and their pattern of recovery. The effect of resistive vibration exercise (RVE) as a countermeasure to muscle atrophy was also investigated. 12 male participants, randomly assigned to either a control or an exercise group, underwent 8 weeks of bed rest with 6 months follow-up. Changes in muscle cross-sectional area (CSA) of the iliacus, psoas, iliopsoas, sartorius and rectus femoris muscles were measured by magnetic resonance imaging at regular intervals during bed rest and recovery phases. CSAs of iliopsoas and sartorius decreased at the hip joint (p<0.05) during bed rest but iliacus, psoas, and rectus femoris CSAs were unchanged (p>0.05). No significant difference was found between the two groups for all muscles (all p>0.1), suggesting inefficacy of the countermeasure in this sample. These findings suggest that prolonged bed rest can result in the atrophy of specific muscles across the hip joint which may affect its stability and function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed-rest with 1-year follow-up in 10 male subjects on the median frequency and the activation timing in surface electromyographic recordings from five superficial lumbo-pelvic muscles during a repetitive knee movement task. Trunk fat mass (from whole body-composition measurements) and movement accuracy as possible explanatory factors were included. Increased median frequency was observed in the lumbar erector spinae starting late in bed-rest, but this was not seen in its synergist, the thoracic erector spinae (p<.0001). These changes persisted up to 1-year after bed-rest and were independent of changes in body-composition or movement accuracy. Analysis suggested decreases of median frequency (p<.0001) in the abdominal and gluteal muscles to result from increased (p<.01) trunk fat levels during and after bed-rest. No changes in lumbo-pelvic muscle activation timing were seen. The results suggest that bed-rest particularly affects the shorter lumbar erector spinae and that the temporal sequencing of superficial lumbo-pelvic muscle activation is relatively robust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY: The addition of whole-body vibration to high-load resistive exercise may provide a better stimulus for the reduction of bone loss during prolonged bed rest (spaceflight simulation) than high-load resistive exercise alone. INTRODUCTION: Prior work suggests that the addition of whole-body vibration to high-load resistive exercise (RVE) may be more effective in preventing bone loss in spaceflight and its simulation (bed rest) than resistive exercise alone (RE), though this hypothesis has not been tested in humans. METHODS: Twenty-four male subjects as part of the 2nd Berlin Bed Rest Study performed RVE (n = 7), RE (n = 8) or no exercise (control, n = 9) during 60-day head-down tilt bed rest. Whole-body, spine and total hip dual X-ray absorptiometry (DXA) measurements as well as peripheral quantitative computed tomography measurements of the tibia were conducted during bed rest and up to 90 days afterwards. RESULTS: A better retention of bone mass in RVE than RE was seen at the tibial diaphysis and proximal femur (p ≤ 0.024). Compared to control, RVE retained bone mass at the distal tibia and DXA leg sub-region (p ≤ 0.020), but with no significant difference to RE (p ≥ 0.10). RE impacted significantly (p = 0.038) on DXA leg sub-region bone mass only. Calf muscle size was impacted similarly by both RVE and RE. On lumbar spine DXA, whole-body DXA and calcium excretion measures, few differences between the groups were observed. CONCLUSIONS: Whilst further countermeasure optimisation is required, the results provide evidence that (1) combining whole-body vibration and high-load resistance exercise may be more efficient than high-load resistive exercise alone in preventing bone loss at some skeletal sites during and after prolonged bed rest and (2) the effects of exercise during bed rest impact upon bone recovery up to 3 months afterwards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microgravity and inactivity due to prolonged bed rest have been shown to result in atrophy of spinal extensor muscles such as the multifidus, and either no atrophy or hypertrophy of flexor muscles such as the abdominal group and psoas muscle. These effects are long-lasting after bed rest and the potential effects of rehabilitation are unknown. This two-group intervention study aimed to investigate the effects of two rehabilitation programs on the recovery of lumbo-pelvic musculature following prolonged bed rest. 24 subjects underwent 60 days of head down tilt bed rest as part of the 2nd Berlin BedRest Study (BBR2-2). After bed rest, they underwent one of two exercise programs, trunk flexor and general strength (TFS) training or specific motor control (SMC) training. Magnetic resonance imaging of the lumbo-pelvic region was conducted at the start and end of bed rest and during the recovery period (14 and 90 days after re-ambulation). Cross-sectional areas (CSAs) of the multifidus, psoas, lumbar erector spinae and quadratus lumborum muscles were measured from L1 to L5. Morphological changes including disc volume, spinal length, lordosis angle and disc height were also measured. Both exercise programs restored the multifidus muscle to pre-bed-rest size, but further increases in psoas muscle size were seen in the TFS group up to 14 days after bed rest. There was no significant difference in the number of low back pain reports for the two rehabilitation groups (p=.59). The TFS program resulted in greater decreases in disc volume and anterior disc height. The SMC training program may be preferable to TFS training after bed rest as it restored the CSA of the multifidus muscle without generating potentially harmful compressive forces through the spine.