67 resultados para LOPEZ, TELMO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the dielectrophoretic (DEP) assembly of multi-walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT-coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti-mouse IgG surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the development of a platform technology for measuring platelet function and aggregation based on localized strain rate micro-gradients. Recent experimental findings within our laboratories have identified a key role for strain rate micro-gradients in focally triggering initial recruitment and subsequent aggregation of discoid platelets at sites of blood vessel injury. We present the design justification, hydrodynamic characterization and experimental validation of a microfluidic device incorporating contraction–expansion geometries that generate strain rate conditions mimicking the effects of pathological changes in blood vessel geometry. Blood perfusion through this device supports our published findings of both in vivo and in vitro platelet aggregation and confirms a critical requirement for the coupling of blood flow acceleration to downstream deceleration for the initiation and stabilization of platelet aggregation, in the absence of soluble platelet agonists. The microfluidics platform presented will facilitate the detailed analysis of the effects of hemodynamic parameters on the rate and extent of platelet aggregation and will be a useful tool to elucidate the hemodynamic and platelet mechano-transduction mechanisms, underlying this shear-dependent process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidics has the potential to enhance the understanding of the biological fluids under strain, due to the laminar nature of the fluid and the possibility to mimic the real conditions. We present advances on charaterization of a microfluidic platform to study high strain rate flows in the transport of biological fluids. These advances are improvements on the reproduction of a  constant extensional strain rate using micro contractions and development of 3D numerical models. The micro geometries have been fabricated in polydimethyl siloxame (PDMS) using standard soft-lithography techniques with a photolithographically patterned mold. A comparison of some microcontractions with different funnel characteristics is presented. The Micro Particle Image Velocimetry technique has been applied to validate the numerical simulations. We demonstrate the use of microfluidics in the reproduction of a large range of controllable extensional strains that can be used in the study of the effect of flow on biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological fluids such as blood, proteins and DNA solutiosn moving within fluidic channels can potentially be exposed to high level of shear, extension or mixed stress, either in vitro such as industrial processing of blood products or in vivo such as ocurrs in some pathological conditions. This exposure to a high level of strain can trigger some reactions. In most of the cases the nature of the flow is mixed with shear and extensional components. The ability ot isolate the effects of each component is critical in order to understand the mechanisms behind the reactions and potentially prevent them. Applying hydrodynamic flow focusing, we present in this investigation the characterization of microchannels that allow study of the regions of high shear or high extension strain rate. Micro channels were fabricated in polydimethyl siloxane (PDMS)  using standard soft-lithography techniques with a photolithographically patterned mold. Characterization of the regions with high shear and high extension strain rate is presented. Computational Fluid Dynamics (CFD) simulations in three dimensions have been carried out to gain more detailed local flow information, and the results have been validated experimentally. A comparison between the numerical models and experiment and is presented. The advantages of microfluidic flow focusing in the study  of the effects of shear and extension strain rates for biological fluids are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design, simulation, fabrication and experimental analysis of a passive micromixer for the mixing of biological solvents. The mixer consists of a T-junction, followed by a serpentine microchannel. the serpentine has three arcs, each equipped with circular barriers that are patterned as two opposing triangles. >The barriers are engineered to induce periodic perturbations in the flow field and enhance the mixing. CFD (Computational Fluid Dynamics) method is applied to optimise the geometric variables of the mixer before fabrication. The mixer is made from PDMS (Polydimethylsiloxane) using photo- and soft-lithography techniques. Experimental measurements are performed using yellow and blue food dyes as the mixing fluids. The mixing is measured by analysing the composition of the flow's colour across the outlet channel. The performance of the mixer is examined in a wide range of flow rates from 0.5 to 10 µl/min. Mixing efficiencies of higher than 99.4% are obtained in the experiments confirming the results of numerical simulations. The proposed mixer can be employed as a part of lab-on-a-chip for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the numerical and experimental analysis of a dielectrophoretic-activated cell sorter (DACS), which is equipped with curved microelectrodes. Curved microelectrodes offer unique advantages, since they create strong dielectrophoretic (DEP) forces over the tips and maintain it over a large portion of their structure, as predicted by simulations. The performance of the system is assessed using yeast (Saccharomyces cerevisiae) cells as model organisms. The separation of the live and dead cells is demonstrated at different medium conductivities of 0.001 and 0.14 S/m, and the sorting performance was assessed using a second array of microelectrodes patterned downstream the microchannel. Further, microscopic cell counting analysis reveals that a single pass through the system yields a separating efficiency of ~80% at low medium conductivities and ~85% at high medium conductivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the separation of polystyrene microparticles suspended in deionized (DI) water according to their dimensions using a dielectrophoretic (DEP) system. The DEP system utilizes curved microelectrodes integrated into a microfluidic system. Microparticles of 1, 6, and 15 μm are applied to the system and their response to the DEP field is studied at different frequencies of 100, 200, and 20 MHz. The microelectrodes act as a DEP barrier for 15 μm particles and retain them at all frequencies whereas the response of 1 and 6 μm particles depend strongly on the applied frequency. At 100 kHz, both particles are trapped by the microelectrodes. However, at 200 kHz, the 1 μm particles are trapped by the microelectrodes while the 6 μm particles are pushed toward the sidewalls. Finally, at 20 MHz, both particles are pushed toward the sidewalls. The experiments show the tunable performance of the system to sort the microparticles of various dimensions in microfluidic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With decades of progress toward ubiquitous networks and systems, distributed computing systems have played an increasingly important role in the industry and society. However, not many distributed networks and systems are secure and reliable in the sense of defending against different attacks and tolerating failures automatically, thus guaranteeing properties such as performance, and offering security against intentional threats. This special issue focuses on securing distributed networks and systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review we highlight recent advances in the understanding of biosilica production, biomodification of diatom frustules and their subsequent applications in bio/chemical sensors, and as a model membrane for filtration and separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present a new construction method of IVFSs from Fuzzy Sets. We use these IVFSs for image processing. Concretely, in this contribution we introduce a new image magnification algorithm using IVFSs. This algorithm is based on block expansion and it is characterized by its simplicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we propose an image reduction algorith based on local reduction operators. We analyze the construction of weak local reduction operators by means of aggregation functions and we analyze the effect of several aggregation functions in image reduction with original and noisy images.