22 resultados para Joan, of Arc, Saint, 1412-1431


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aluminium nitride (AlN) branched nanostructures with tree shapes and sea urchin shapes are synthesized via a one-step improved DC arc discharge plasma method without any catalyst and template. The branched nanostructures with tree shapes and sea urchin shapes can be easily controlled by the location of collection. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the branches of tree shaped nanostructures grow in a sequence of nanowires, nanomultipeds and nanocombs. The growth mechanisms of these branched nanostructures are discussed in detail. The optical properties of AlN branched nanostructures with tree shapes and sea urchin shapes are investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tin oxide/nitride (SnOxNy) thin films were synthesised using a filtered cathodic vacuum arc deposition system. These films were deposited at room temperature with increasing amounts of reactive nitrogen gas to alter the nanostructure. To understand the surface structure of the coatings several techniques were used including scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS). Preliminary results have shown that a cathodic arc can be used to deposit smooth films which exhibit a mixed tin oxide/nitride structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.