59 resultados para INHIBITORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin IV (Ang IV) exerts profound effects on memory and learning, a phenomenon ascribed to its binding to a specific AT4 receptor. However the AT4 receptor has recently been identified as the insulin-regulated aminopeptidase (IRAP). In this study, we demonstrate that AT4 receptor ligands, including Ang IV, Nle1-Ang IV, divalinal-Ang IV, and the structurally unrelated LVV-hemorphin-7, are all potent inhibitors of IRAP catalytic activity, as assessed by cleavage of leu-β-naphthylamide by recombinant human IRAP. Both Ang IV and divalinal–Ang IV display competitive kinetics, indicating that AT4 ligands mediate their effects by binding to the catalytic site of IRAP. The AT4 ligands also displaced [125I]-Nle1-Ang IV or [125I]-divalinal1-Ang IV from IRAP-HEK293T membranes with high affinity, which was up to 200-fold greater than in the catalytic assay; this difference was not consistent among the peptides, and could not be ascribed to ligand degradation. Although some AT4 ligands were subject to minor cleavage by HEK293T membranes, none were substrates for IRAP. Of a range of peptides tested, only vasopressin, oxytocin, and met-enkephalin were rapidly cleaved by IRAP. We propose that the physiological effects of AT4 ligands result, in part, from inhibition of IRAP cleavage of neuropeptides involved in memory processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rare earth organic compounds pioneered by our group have been shown to provide a viable alternative to theuse of chromates as corrosion inhibitors for some steel and aluminium applications. For example we have shown thatthe lanthanum 4-hydroxy cinnamate offers excellent corrosion mitigation for mild steel in aqueous environments whilerare earth diphenyl phosphates offer the best protection in the case of aluminium alloys. In both cases the protectionappears to be related to the formation of a nanometre thick interphase occurring on the surface that reduces theelectrochemical processes leading to metal loss or pitting. Very recent work has indicated that we may even be able toaddress the challenging issue of stress corrosion cracking of high strength steels. Furthermore, filiform corrosion can besuppressed when selected rare earth inhibitor compounds are added as pigments to a polymer coating. There is little doubtfrom the work thus far that a synergy exists between the rare earth and organic inhibitor components in these novelcompounds. This paper reviews some of the published research conducted by the senior author and colleagues over the past10 years in this developing field of green corrosion inhibitors