22 resultados para IGF-I mRNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proposed that mitochondrial uncoupling protein 3 (UCP3) behaves as an uncoupler of oxidative phosphorylation. In a cross-sectional study, UCP3 protein levels were found to be lower in all fibre types of endurance-trained cyclists as compared to healthy controls. This decrease was greatest in the type I oxidative fibres, and it was hypothesised that this may be due to the preferential recruitment of these fibres during endurance training. To test this hypothesis, we compared the effects of 6 weeks of endurance (ETr) and sprint (STr) running training on UCP3 mRNA expression and fibre-type protein content using real-time PCR and immunofluorescence techniques, respectively. UCP3 mRNA and protein levels were downregulated similarly in ETr and STr (UCP3 mRNA: by 65 and 50 %, respectively; protein: by 30 and 27 %, respectively). ETr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 54, 29 and 16 %, respectively. STr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 24, 31 and 26 %, respectively. The fibre-type reductions in UCP3 due to ETr, but not STr, were significantly different from each other, with the effect being greater in type I than in type IIa, and in type IIa than in type IIx fibres. As a result, compared to STr, ETr reduced UCP3 expression significantly more in fibre type I and significantly less in fibre types IIx. This suggests that the more a fibre is recruited, the more it adapts to training by a decrease in its UCP3 expression. In addition, the more a fibre type depends on fatty acid beta oxidation and oxidative phosphorylation, the more it responds to ETr by a decrease in its UCP3 content.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. Methods: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump α1, α2, α3, β1, β2 and β3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). Results: ETM demonstrated lower α1, α3, β2 and β3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P < 0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P < 0.03). RAM demonstrated a 230% and 364% higher α3 and b3 mRNA expression than RAF, respectively (P < 0.05), but no significant sex differences were found for α1, α2, β1 or β2 mRNA, [3H]-ouabain binding  or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r = 0.31, P < 0.02) and between incremental exercise V O2(peak) and both   [3H]-ouabain binding (r = 0.33, P < 0.01) and 3-O-MFPase activity (r = 0.28, P < 0.03). Conclusions: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the interaction of exercise and diet on glucose transporter (GLUT-4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty-eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high-fat (FAT, n =24) or high-carbohydrate (CHO, n =24). Animals in each dietary condition were allocated to one of two groups: control (NT, n =8) or a group that performed 8 weeks of treadmill running (4 sessions week<sup>–1</sup> of 1000 m @ 28 m min<sup>–1</sup> , RUN, n =16). Eight trained rats were killed after their final exercise bout for determination of GLUT-4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT-4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT-4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet–training interaction on GLUT-4 mRNA, such that expression was increased in both the soleus (100% ↑P < 0.05) and EDL (142% ↑P < 0.01) in CHO-fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL (↓ 45%, P < 0.05) but not the soleus (↓ 14%, NS). We conclude that exercise training in CHO-fed rats increased both GLUT-4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT-4 mRNA in muscles from fat-fed animals, exercise-induced increases in GLUT-4 protein were largely preserved, suggesting that control of GLUT-4 protein and gene expression are modified independently by exercise and diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ~40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, ß1-, ß2- and ß3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Δ3-O-MFPaserest-fatigue) (r = –0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) {alpha}1-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Δ3-O-MFPaserest-fatigue (r = –0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Δ3-O-MFPaserest-fatigue (r = –0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Δ3-O-MFPaserest-fatigue (r = –0.68, P < 0.05). Nonsignificant correlations were found between %Δ3-O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated effects of prolonged submaximal exercise on Na+-K+-ATPase mRNA and protein expression, maximal activity, and content in human skeletal muscle. We also investigated the effects on mRNA expression of the transcription initiator gene, RNA polymerase II (RNAP II), and key genes involved in protein translation, eukaryotic initiation factor-4E (eIF-4E) and 4E-binding protein 1 (4E-BP1). Eleven subjects (6 men, 5 women) cycled at 75.5% (SD 4.8%) peak O2 uptake and continued until fatigue. A vastus lateralis muscle biopsy was taken at rest, fatigue, and 3 and 24 h postexercise. We analyzed muscle for Na+-K+-ATPase α1, α2, α3, β1, β2, and β3, as well for RNAP II, eIF-4E, and 4E-BP1 mRNA expression by real-time RT-PCR and Na+-K+-ATPase isoform protein abundance using immunoblotting. Muscle homogenate maximal Na+-K+-ATPase activity was determined by 3-O-methylfluorescein phosphatase activity and Na+-K+-ATPase content by [3H]ouabain binding. Cycling to fatigue [54.5 (SD 20.6) min] immediately increased {alpha}3 (P = 0.044) and {beta}2 mRNA (P = 0.042) by 2.2- and 1.9-fold, respectively, whereas {alpha}1 mRNA was elevated by 2.0-fold at 24 h postexercise (P = 0.036). A significant time main effect was found for α3 protein abundance (P = 0.046). Exercise transiently depressed maximal Na+-K+-ATPase activity (P = 0.004), but Na+-K+-ATPase content was unaltered throughout recovery. Exercise immediately increased RNAP II mRNA by 2.6-fold (P = 0.011) but had no effect on eIF-4E and 4E-BP1 mRNA. Thus a single bout of prolonged submaximal exercise induced isoform-specific Na+-K+-ATPase responses, increasing α1, α3, and β2 mRNA but only α3 protein expression. Exercise also increased mRNA expression of RNAP II, a gene initiating transcription, but not of eIF-4E and 4E-BP1, key genes initiating protein translation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective:  In order to identify whether the mechanisms associated with neurotransmitter release are involved in the pathologies of bipolar disorder and schizophrenia, levels of presynaptic [synaptosomal-associated protein-25 (SNAP-25), syntaxin, synaptophysin, vesicle-associated membrane protein, dynamin I] and structural (neuronal cell adhesion molecule and alpha-synuclein) neuronal markers were measured in Brodmann's area 9 obtained postmortem from eight subjects with bipolar I disorder (BPDI), 20 with schizophrenia and 20 controls.
Methods:  Determinations of protein levels were carried out using Western blot techniques with specific antibodies. Levels of mRNA were measured using real-time polymerase chain reaction.
Results:  In BPDI, levels of SNAP-25 (p < 0.01) and synaptophysin (p < 0.05) increased. There were no changes in schizophrenia or any other changes in BPDI. Levels of mRNA for SNAP-25 were decreased in BPDI (p < 0.05).
Conclusion:  Changes in SNAP-25 and synaptophysin in BPDI suggest that changes in specific neuronal functions could be linked to the pathology of the disorder.