35 resultados para Histone Acetyltransferases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Malignant rhabdoid tumor (MRT) and atypical teratoid rhabdoid tumors (ATRT) are rare aggressive undifferentiated tumors primarily affecting the kidney and CNS of infants and young children. MRT are almost exclusively characterized by homozygous deletion or inactivation of the chromatin remodeling gene SMARCB1 SMARCB1 protein loss leads to direct impairment of chromatin remodeling and we have previously reported a role for this protein in histone acetylation. This provided the rationale for investigating the therapeutic potential of histone deactylase inhibitors (HDACi) in MRT. EXPERIMENTAL DESIGN: Whereas previously HDACis have been used at doses and schedules that induce cytotoxicity, in the current studies we have tested the hypothesis, both in vitro and in vivo, that sustained treatment of human MRT with low-dose HDACi can lead to sustained cell growth arrest and differentiation. RESULTS: Sustained low-dose panobinostat (LBH589) treatment led to changes in cellular morphology associated with a marked increase in the induction of neural, renal, and osteoblast differentiation pathways. Genome-wide transcriptional profiling highlighted differential gene expression supporting multilineage differentiation. Using mouse xenograft models, sustained low-dose LBH589 treatment caused tumor growth arrest associated with tumor calcification detectable by X-ray imaging. Histological analysis of LBH589-treated tumors revealed significant regions of ossification, confirmed by Alizarin Red staining. Immunohistochemical analysis showed increased TUJ1 and PAX2 staining suggestive of neuronal and renal differentiation, respectively. CONCLUSIONS: Low-dose HDACi treatment can terminally differentiate MRT tumor cells and reduce their ability to self-renew. The use of low-dose HDACi as a novel therapeutic approach warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of GLUT4 in skeletal muscle enhances whole-body insulin action. Exercise increases GLUT4 gene and protein expression, and a binding site for the myocyte enhancer factor 2 (MEF-2) is required on the GLUT4 promoter for this response. However, the molecular mechanisms involved remain elusive. In various cell systems, MEF-2 regulation is a balance between transcriptional repression by histone deacetylases (HDACs) and transcriptional activation by the nuclear factor of activated T-cells (NFAT), peroxisome proliferator-activated receptor- coactivator 1 (PGC-1), and the p38 mitogen-activated protein kinase. The purpose of this study was to determine if these same mechanisms regulate MEF-2 in contracting human skeletal muscle. Seven subjects performed 60 min of cycling at 70% of Vo2peak. After exercise, HDAC5 was dissociated from MEF-2 and exported from the nucleus, whereas nuclear PGC-1 was associated with MEF-2. Exercise increased total and nuclear p38 phosphorylation and association with MEF-2, without changes in total or nuclear p38 protein abundance. This result was associated with p38 sequence-specific phosphorylation of MEF-2 and an increase in GLUT4 mRNA. Finally, we found no role for NFAT in MEF-2 regulation. From these data, it appears that HDAC5, PGC-1, and p38 regulate MEF-2 and could be potential targets for modulating GLUT4 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zn and DHA have putative neuroprotective effects and these two essential nutrients are known to interact biochemically. We aimed to identify novel protein candidates that are differentially expressed in human neuronal cell line M17 in response to Zn and DHA that would explain the molecular basis of this interaction. Two-dimensional gel electrophoresis and MS were applied to identify major protein expression changes in the protein lysates of human Ml7 neuronal cells that had been grown in the presence and absence of Zn and DHA. Proteomic findings were further investigated using Western immunoblot and real-time PCR analyses. Four protein spots, which had significant differential expression, were identified and selected for in-gel trypsin digestion followed by matrix-assisted laser desorption ionisation MS analysis. The resultant peptide mass fingerprint for each spot allowed their respective identities to be deduced. Two human histone variants H3 and H4 were identified. Both H3 and H4 were downregulated by Zn in the absence of DHA (Zn effect) and upregulated by DHA (DHA effect) in the presence of Zn (physiological condition). These proteomic findings were further supported by Western immunoblot and real-time PCR analyses using H3- and H4-specific monoclonal antibodies and oligonucleotide primers, respectively. We propose that dietary Zn and DHA cause a global effect on gene expression, which is mediated by histones. Such novel information provides possible clues to the molecular basis of neuroprotection by Zn and DHA that may contribute to the future treatment, prevention and management of neurodegenerative diseases such as Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.      Skeletal muscle is a highly plastic tissue that has a remarkable ability to adapt to external demands, such as exercise. Many of these adaptations can be explained by changes in skeletal muscle gene expression. A single bout of exercise is sufficient to induce the expression of some metabolic genes. We have focused our attention on the regulation of glucose transporter isoform 4 (GLUT-4) expression in human skeletal muscle.

2.      Glucose transporter isoform 4 gene expression is increased immediately following a single bout of exercise, and the GLUT-4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) transcription factors are required for this response. Glucose transporter isoform enhancer factor and MEF2 DNA binding activities are increased following exercise, and the molecular mechanisms regulating MEF2 in exercising human skeletal muscle have also been examined.

3.      These studies find possible roles for histone deacetylase 5 (HDAC5), adenosine monophosphate–activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and p38 mitogen-activated protein kinase (MAPK) in regulating MEF2 through a series of complex interactions potentially involving MEF2 repression, coactivation and phosphorylation.

4.      Given that MEF2 is a transcription factor required for many exercise responsive genes, it is possible that these mechanisms are responsible for regulating the expression of a variety of metabolic genes during exercise. These mechanisms could also provide targets for the treatment and management of metabolic disease states, such as obesity and type 2 diabetes, which are characterized by mitochondrial dysfunction and insulin resistance in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Women exhibit an enhanced capability for lipid metabolism during endurance exercise compared with men. The underlying regulatory mechanisms behind this sex-related difference are not well understood but may comprise signaling through a myocyte enhancer factor 2 (MEF2) regulatory pathway. The primary purpose of this study, therefore, was to investigate the protein signaling of MEF2 regulatory pathway components at rest and during 90 min of bicycling exercise at 60% VO2peak in healthy, moderately trained men (n = 8) and women (n = 9) to elucidate the potential role of these proteins in substrate utilization during exercise. A secondary purpose was to screen for mRNA expression of MEF2 isoforms and myogenic regulatory factor (MRF) family members of transcription factors at rest and during exercise. Muscle biopsies were obtained before and immediately after exercise. Nuclear AMP-activated protein kinase-{alpha} ({alpha}AMPK) Thr172 (P < 0.001), histone deacetylase 5 (HDAC5) Ser498 (P < 0.001), and MEF2 Thr (P < 0.01) phosphorylation increased with exercise. No significant sex differences were observed at rest or during exercise. At rest, no significant sex differences were observed in mRNA expression of the measured transcription factors. mRNA for transcription factors MyoD, myogenin, MRF4, MEF2A, MEF2C, MEF2D, and peroxisome proliferator-activated receptor-{gamma} coactivator 1{alpha} (PGC1{alpha}) were significantly upregulated by exercise. Of these, MEF2A mRNA increased 25% specifically in women (P < 0.05), whereas MEF2D mRNA tended to increase in men (P = 0.11). Although minor sex differences in mRNA expression were observed, the main finding of the present study was the implication of a joint signaling action of AMPK, HDAC5, and PGC1{alpha} on MEF2 in the immediate regulatory response to endurance exercise. This signaling response was independent of sex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of adenosine mono phosphate (AMP)-activated protein kinase (AMPK) vs Akt-mammalian target of rapamycin C1 (mTORC1) protein signaling mechanisms on converting differentiated exercise into training specific adaptations is not well-established. To investigate this, human subjects were divided into endurance, strength, and non-exercise control groups. Data were obtained before and during post-exercise recovery from single-bout exercise, conducted with an exercise mode to which the exercise subjects were accustomed through 10 weeks of prior training. Blood and muscle samples were analyzed for plasma substrates and hormones and for muscle markers of AMPK and Akt-mTORC1 protein signaling. Increases in plasma glucose, insulin, growth hormone (GH), and insulin-like growth factor (IGF)-1, and in phosphorylated muscle phospho-Akt substrate (PAS) of 160 kDa, mTOR, 70 kDa ribosomal protein S6 kinase, eukaryotic initiation factor 4E, and glycogen synthase kinase 3α were observed after strength exercise. Increased phosphorylation of AMPK, histone deacetylase5 (HDAC5), cAMP response element-binding protein, and acetyl-CoA carboxylase (ACC) was observed after endurance exercise, but not differently from after strength exercise. No changes in protein phosphorylation were observed in non-exercise controls. Endurance training produced an increase in maximal oxygen uptake and a decrease in submaximal exercise heart rate, while strength training produced increases in muscle cross-sectional area and strength. No changes in basal levels of signaling proteins were observed in response to training. The results support that in training-accustomed individuals, mTORC1 signaling is preferentially activated after hypertrophy-inducing exercise, while AMPK signaling is less specific for differentiated exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Stromal cell-derived factor-1 (SDF-1) is expressed in pre-adipocytes but its role is unknown. We investigated butyrate (a histone deacetylase inhibitor - HDACi) and other short-chain fatty acids (SCFA) in the regulation of SDF-1. We further investigated whether effects of SCFA were signalled through G protein-coupled receptors FFA2 and FFA3. Design and Results: SDF-1 mRNA expression and protein secretion were studied in 3T3-L1 cells and human pre-adipocytes. SDF-1 was abundant, with mRNA and protein levels increased by butyrate. This was replicated with acetate and propionate, but not with trichostatin or valproate. Trichostatin inhibited SDF-1 secretion. Pertussis toxin blocked stimulation by butyrate. The order of potency of SCFA in stimulating SDF-1 (C3 > C4 > C2) is consistent with action through FFA3. Silencing the FFA3 gene abolished butyrate-stimulated SDF-1 expression and secretion. FFA3 was expressed in both pre-adipocytes and adipocytes, while FFA2 was expressed in adipocytes only. SDF-1 expression was low in murine macrophage J774.2 cells, while the SDF-1 receptor CXCR4 was absent from 3T3-L1 cells but abundant in J774.2 macrophages. In human pre-adipocytes, FFA3 was also expressed and SCFA increased SDF-1 secretion. Conclusions: SDF-1 and CXCR4 may mediate the interaction between adipose stromal cells and macrophages. Effects of SCFA are mediated through FFA3, but not histone deacetylase inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) can lead to cell death, genome instability and carcinogenesis. Immunofluorescence detection of phosphorylated histone variant H2AX (γ-H2AX) is a reliable and sensitive technique to monitor external beam IR-induced DSBs in peripheral blood lymphocytes (PBL). Here, we investigated whether γ-H2AX could be used as an in vivo marker to assess normal tissue toxicity after extended internal irradiation with (177)Lu-DOTA-octreotate peptide receptor radionuclide therapy (LuTate PRRT) of neuroendocrine tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.