39 resultados para Heavy-chain Gene


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The limited activity of Δ6 fatty acid desaturase (FAD6) on α-linolenic (ALA, 18:3n-3) and linoleic (LA, 18:2n-6) acids in marine fish alters the long-chain (≥C20) polyunsaturated fatty acid (LC-PUFA) concentration in fish muscle and liver when vegetable oils replace fish oil (FO) in aquafeeds. Echium oil (EO), rich in stearidonic acid (SDA, 18:4n-3) and γ-linoleic acid (GLA, 18:3n-6), may enhance the biosynthesis of n-3 and n-6 LC-PUFA by bypassing the rate-limiting FAD6 step. Nutritional and environmental modulation of the mechanisms in LC-PUFA biosynthesis was examined in barramundi, Lates calcarifer, a tropical euryhaline fish. Juveniles were maintained in either freshwater or seawater and fed different dietary LC-PUFA precursors present in EO or rapeseed oil (RO) and compared with FO. After 8 weeks, growth of fish fed EO was slower compared to the FO and RO treatments. Irrespective of salinity, expression of the FAD6 and elongase was up-regulated in fish fed EO and RO diets, but did not lead to significant accumulation of LC-PUFA in the neutral lipid of fish tissues as occurred in the FO treatment. However, significant concentrations of eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), but not docosahexaenoic acid (DHA, 22:6n-3), appeared in liver and, to a lesser extent, in muscle of fish fed EO with marked increases in the phospholipid fraction. Fish in the EO treatment had higher EPA and ARA in their liver phospholipids than fish fed FO. Endogenous conversion of dietary precursors into neutral lipid LC-PUFA appears to be limited by factors other than the initial rate-limiting step. In contrast, phospholipid LC-PUFA had higher biosynthesis, or selective retention, in barramundi fed EO rather than RO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 ± 2% of peak O2 uptake for 60 min/day. Muscle biopsies were taken before, immediately after, and 3 h after the exercise bouts (on days 1 and 9). The gene expression of insulin receptor substrate-2 and the p85α subunit of phosphatidylinositol 3-kinase was significantly higher 3 h after a single exercise bout, although short-term training ameliorated this effect. Gene expression of insulin receptor and insulin receptor substrate-1 was not significantly altered at any time point. These results suggest that exercise may have a transitory impact on the expression of insulin receptor substrate-2 and phosphatidylinositol 3-kinase; however, the predominant actions of exercise on insulin sensitivity appear not to reside in the transcriptional activation of the genes encoding major insulin-signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using differential display polymerase chain reaction, a gene was identified in CD34+-enriched populations that had with low or absent expression in CD34- populations. The full coding sequence of this transcript was obtained, and the predicted protein has a high degree of homology to oxysterol-binding protein. This gene has been designated OSBP-related protein 3 (ORP-3). Expression of ORP-3 was found to be 3- to 4-fold higher in CD34+ cells than in CD34- cells. Additionally, expression of this gene was 2-fold higher in the more primitive subfraction of hematopoietic cells defined by the CD34+38- phenotype and was down-regulated with the proliferation and differentiation of CD34+ cells. The ORP-3 predicted protein contains an oxysterol-binding domain. Well-characterized proteins expressing this domain bind oxysterols in a dose-dependent fashion. Biologic activities of oxysterols include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, among them hematopoietic cells. Characterization and differential expression of ORP-3 implicates a possible role in the mediation of oxysterol effects on hematopoiesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA-based approaches to the discovery of genes contributing to the development of type 2 diabetes have not been very successful despite substantial investments of time and money. The multiple gene-gene and gene-environment interactions that influence the development of type 2 diabetes mean that DNA approaches are not the ideal tool for defining the etiology of this complex disease. Gene expression-based technologies may prove to be a more rewarding strategy to identify diabetes candidate genes. There are a number of RNA-based technologies available to identify genes that are differentially expressed in various tissues in type 2 diabetes. These include differential display polymerase chain reaction (ddPCR), suppression subtractive hybridization (SSH), and cDNA microarrays. The power of new technologies to detect differential gene expression is ideally suited to studies utilizing appropriate animal models of human disease. We have shown that the gene expression approach, in combination with an excellent animal model such as the Israeli sand rat (Psammomys obesus), can provide novel genes and pathways that may be important in the disease process and provide novel therapeutic approaches. This paper will describe a new gene discovery, beacon, a novel gene linked with energy intake. As the functional characterization of novel genes discovered in our laboratory using this approach continues, it is anticipated that we will soon be able to compile a definitive list of genes that are important in the development of obesity and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine D2 receptors (DRD2) in the central nervous system are involved in the regulation of feeding. It remains to be elucidated if mutations in the DRD2 gene contribute to the development of obesity. The aim of the present study was to investigate whether the Taq IA and Ser311Cys polymorphisms in the DRD2 gene are associated with obesity in Nauruan and Australian subjects. Subjects were selected based on extremes of the body mass index (BMI) distribution. Two groups of Australian women were selected. The leanest group had a mean BMI of 22.5 kg/m2 (range: 20.3-24.3) and the heaviest group had a mean of 36.1 kg/m2 (32.5-44.1). Four groups of Nauruan subjects were selected. Leanest men had a mean BMI of 33.0 kg/m2 (28.4-36.9), heaviest men had a mean of 52.8 kg/m2 (46.5-69.2), leanest women had a mean of 34.8 kg/m2 (28.2-41.8) and heaviest women had a mean of 55.1 kg/m2 (49.3-73.8). Subjects were genotyped for the Taq IA and Ser311Cys polymorphisms using polymerase chain reaction (PCR) restriction fragment length polymorphism analysis and allelic discrimination TaqmanTM PCR respectively. Leanest and heaviest groups were examined for differences in genotype frequency. Taq IA and Ser311Cys genotype frequencies did not differ significantly between leanest and heaviest Nauruan groups, or between leanest and heaviest Australians. Haplotype frequencies of these polymorphisms did not differ between leanest and heaviest groups. The Taq IA and Ser311Cys polymorphisms in the DRD2 gene are unlikely to be common causes of obesity in these populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [ Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 mug/mL) or leptin (2.5 mug/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real-time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8-fold and 2.5-fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese-prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fishes will respond to these increased temperatures and which genes are important in the response to elevated temperatures is not known. Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we tested the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Results from a comparative genomic hybridization experiment and direct sequence comparisons indicate that for most genes there is considerable sequence similarity between the two species, suggesting that the D. rerio array is useful for genomic studies of P. moluccensis. We employed this heterologous microarray approach to characterize the early transcriptional response to heat stress in P. moluccensis. A total of 111 gene loci, many of which are involved in protein processing, transcription, and cell growth, showed significant changes in transcript abundance following exposure to elevated temperatures. Changes in transcript abundance were validated for a selection of candidate genes using quantitative real-time polymerase chain reaction. This study demonstrates that heterologous microarrays can be successfully employed to study species for which specific microarrays have not yet been developed, and so have the potential to greatly enhance the utility of microarray technology to the field of environmental and functional genomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 (CYP2B6) is an important enzyme that metabolizes more than eight compounds and about 3.0% of therapeutic drugs. The genetic polymorphisms of CYP2B6 have earlier been studied in Caucasian, Japanese and Korean, but the data are lacking for Han Chinese. The aim of this study was to investigate the frequencies of allelic variants of CYP2B6 in healthy Han Chinese and compare with those in other ethnic groups reported in the literature. Polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) method was used to test the five common non-synonymous single nucleotide polymorphisms (SNPs) of CYP2B6 gene, namely, 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T in unrelated healthy Han Chinese (n = 193). The study demonstrated that the frequencies of 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T SNPs in Han Chinese were 0.03, 0.21, 0, 0.28 and 0.003, respectively. The frequencies of all five SNPs tested in female were higher than those in male, but the statistical difference was insignificant (P > 0.05). Compared to the data reported in the literature, the frequencies of common CYP2B6 allelic variants in Chinese are similar to those of other Asian populations including Japanese and Korean, but markedly different from those in Caucasians. These results indicate the presence of marked ethnic difference in CYP2B6 SNP frequencies between Chinese and Caucasian. Further studies are required to explore the impact of these SNPs of CYP2B6 gene on the clinical response (efficacy and toxicity) to drugs that are substrates for CYP2B6 in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bovine Muc1 protein is synthesized by mammary epithelial cells and shed into milk as an integral component of the milk fat globule membrane; however, the structure and functions of this mucin, particularly in relation to lactation, are poorly defined. The objectives of this investigation were to investigate the Muc1 gene and protein structures in the context of lactation and to test the hypothesis that Muc1 has a role in innate immune defense. Polymerase chain reaction analysis of genomic DNA from 630 cattle revealed extensive polymorphism in the variable number of tandem repeats (VNTR) in the bovine Muc1 gene. Nine allelic
variants spanning 7 to 23 VNTR units, each encoding 20 AA, were identified. Three alleles, containing 11, 14, and 16 VNTR units, respectively, were predominant. In addition, a polymorphism in one of the VNTR units has the potential to introduce a unique site for N-linked glycosylation. Statistical analysis indicated weak associations between the VNTR alleles and milk protein and fat percentages in a progeny-tested population of Holstein-Friesian dairy cattle. No association with somatic cell count could be demonstrated. Bovine Muc1 was purified from milk fat globule membranes and characterized. The protein was highly glycosylated, primarily with O-linked sialylated T-antigen [Neu5Ac(α2–3)-Gal(β1–3)-GalNAcα1] and, to a lesser extent, with N-linked oligosaccharides, which together accounted for approximately 60% of the apparent mass of Muc1. Purified bovine Muc1 directly bound fluorescently labeled Escherichia coli BioParticles (Invitrogen, Mount Waverley, Australia) and inhibited their binding to bovine mammary epithelial cells grown in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A putative abalone egg-laying hormone has been amplified by polymerase chain reaction (PCR) from abalone genomic DNA. The PCR product was found to hybridize to Lymnaea stagnalis egg-laying hormone (CDCH) cDNA probe and the PCR product was then cloned and sequenced. Nucleotide sequences of putative abalone egg-laying hormone were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal vein occlusion (RVO) is associated with hyperhomocysteinaemia and the antiphospholipid syndrome—disorders known to contribute to both arterial and venous thrombosis. In both of these conditions and RVO, platelet activation occurs. Aspirin, not warfarin, is the most effective antithrombotic agent in RVO and, taken together, these observations suggest an important role for platelets in this common ocular thrombotic condition. Platelet glycoprotein Ia/IIa (GpIa/IIa) is an adhesion molecule mediating platelet–collagen interactions and is key to the initiation of thrombosis. Recently, the cellular density of this molecule was shown to be determined by two silent, linked polymorphisms (C807T/G873A) within the GpIa/IIa gene. There is evidence that some of the resulting genotypes are associated with thrombo-embolic disease. This study therefore aimed to establish the prevalence of the GpIa/IIa polymorphisms and the three commonest hereditary thrombophilic disorders (prothrombin gene G20210A (PT) mutation, Factor V Leiden (FVL), and the thermolabile methylene tetrahydrofolate reductase C677T (MTHFR) mutation) in patients with RVO and normal controls. The GpIa/IIa polymorphisms and thrombophilic abnormalities were all identified using the polymerase chain reaction.

Our results show that the frequency of the GpIa/IIa polymorphisms was similar in our normal control population to previously published series. Patients with RVO, however, had only a 10% (4/40) frequency of the lowest risk subtype (CC/GG) compared to 37.5% (15/40) in the control group—P 0.0039. The incidence of the PT, FVL, and MTHFR thrombophilic mutations was not different between the two groups, but interestingly none of the 7/40 RVO cases with a PT, FVL, or MTHFR mutation had the low-risk GpIa/IIa genotype while all but one of the controls did—P<0.05. Thus, 17.5% of RVO patients harboured more than one prothrombotic abnormality. The principal difference between the RVO and control group was the very high incidence of the intermediate-risk GpIa/IIa subtype (CT/GA)—82.5 vs 50%, P<0.05.

These results suggest a major role for GpIa/IIa polymorphisms in the pathogenesis of RVO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cordycepin (3′ deoxyadenosine) is a biologically active compound that, when incorporated during RNA synthesis in vitro, provokes chain termination due to the absence of a 3′ hydroxyl moiety. We were interested in the effects mediated by this drug in vivo and analyzed its impact on RNA metabolism of yeast. Our results support the view that cordycepin-triphosphate (CoTP) is the toxic component that is limiting cell growth through inhibition of RNA synthesis. Unexpectedly, cordycepin treatment modulated 3′ end heterogeneity of ACT1 and ASC1 mRNAs and rapidly induced extended transcripts derived from CYH2 and NEL025c loci. Moreover, cordycepin ameliorated the growth defects of poly(A) polymerase mutants and the pap1-1 mutation neutralized the effects of the drug on gene expression. Our observations are consistent with an epistatic relationship between poly(A) polymerase function and cordycepin action and suggest that a major mode of cordycepin activity reduces 3′ end formation efficiency independently of its potential to terminate RNA chain elongation. Finally, chemical-genetic profiling revealed genome-wide pathways linked to cordycepin activity and identified novel genes involved in poly(A) homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcγR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcγRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcγRs, suggesting a defect downstream of initial receptor activation. FcγR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the γ signaling subunit of FcγR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the γ signaling subunit augmented FcγR-mediated phagocytosis, suggesting that down-modulation of γ-chain protein expression in HIV-infected MDM caused the defective FcγR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcγR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.