28 resultados para HEMATOPOIETIC STEM-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This thesis successfully developed a novel strategy using chemical antibodies for targeting cancer stem cells, suggesting that this novel strategy of effective targeting the roots of cancer could potentially revolutionize the future cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the molecular basis of drug resistance and utilising this information to overcome chemoresistance remains a key challenge in oncology. Here we report that survivin, a key protein implicated in drug resistance, is overexpressed in cancer stem cell pool of doxorubicin-resistant breast cancer cells. Moreover, by utilising an active targeting system consisting of an RNA aptamer targeted against the epithelial cell adhesion molecule and a Dicer substrate survivin siRNA, we could deliver a high dose of the siRNA to cancer stem cells in xenograft tumours. Importantly, silencing of survivin with this aptamer-siRNA chimera in cancer stem cell population led to the reversal of chemoresistance, such that combined treatment with low dose of doxorubicin inhibited stemness, eliminated cancer stem cells via apoptosis, suppressed tumour growth, and prolonged survival in mice bearing chemoresistant tumours. This strategy for in vivo cancer stem cell targeting has wide application for future effective silencing of anti-death genes and in fact any dysregulated genes involved in chemoresistance and tumour relapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-to-cell communication is an integral function of multicellular organisms. Many of these signals are received by a myriad of cell-surface receptors that utilize a range of intracellular signaling pathways to communicate this to the nucleus, rapidly impacting on the transcription of target genes in order to elicit the desired response, such as proliferation, differentiation, activation, and survival. Dysregulation of these important signaling pathways, and networks, often lead to pathological conditions due to inappropriate cell responses with negative consequences. The aberrant signaling pathways have been associated with many diseases, including cancer. Cytokines and chemokines convey a multitude of messages to the target cell, many of which are beneficial for cancers and cancer stem cells, such as proliferation, survival and migration. By hijacking this communication network, cancers and cancer stem cells can become invasive and more pathogenic. Furthermore, by using these communication systems, cancer stem cells are able to evade current therapies. Therefore, novel therapies may be developed to break the communication systems of the cancer stem cells. This chapter explores the role of the cytokines TGF-β, TNF-α, IL-1 and IL-6 and chemokine CXCL8 as well as NF-κB and their role in cancer stem cell survival and maintenance. Emerging therapies are beginning to target the cancer stem cell population, either specifically or synergistically with existing therapeutic options. These novel therapies may hold the key to breaking the communication network of cancer stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer stem cells are often referred to as the root of cancer as they drive tumour growth and are resistant to traditional anti-cancer therapies. By using a colon cancer model, targeting the cancer stem cells with aptamers can efficiently kill these cells and prevent tumours from regrowing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granulocyte colony-stimulating factor receptor (G-CSFR) plays an important role in the production, survival and activation of neutrophilic granulocytes during both normal and emergency hematopoiesis. The G-CSFR also participates in the development of other myeloid lineages, the mobilization of hematopoietic stem cells and myeloid cell migration. This has lead to several important clinical applications for its ligand, G-CSF. More recently, additional important roles for G-CSFR have emerged outside the hematopoietic system, such as in the protection and repair of a diverse range of tissues, including muscle, liver and neural tissue, providing further scope for developing G-CSF as a therapeutic agent. The G-CSFR has also been implicated in the etiology of disease, with mutations/variants of G-CSFR implicated in neutropenia, myelodysplasia and leukemia. Additionally, autocrine/paracrine stimulation of G-CSFR may be important in the biology of solid tumors, including metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH(2) functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise at regular intervals is assumed to have a positive effect on immune functions. Conversely, after spaceflight and under simulated weightlessness (e.g., bed rest), immune functions can be suppressed. We aimed to assess the effects of simulated weightlessness (Second Berlin BedRest Study; BBR2-2) on immunological parameters and to investigate the effect of exercise (resistive exercise with and without vibration) on these changes. Twenty-four physically and mentally healthy male volunteers (20-45 years) performed resistive vibration exercise (n=7), resistance exercise without vibration (n=8) or no exercise (n=9) within 60 days of bed rest. Blood samples were taken 2 days before bed rest, on days 19 and 60 of bed rest. Composition of immune cells was analyzed by flow cytometry. Cytokines and neuroendocrine parameters were analyzed by Luminex technology and ELISA/RIA in plasma. General changes over time were identified by paired t-test, and exercise-dependent effects by pairwise repeated measurements (analysis of variance (ANOVA)). With all subjects pooled, the number of granulocytes, natural killer T cells, hematopoietic stem cells and CD45RA and CD25 co-expressing T cells increased and the number of monocytes decreased significantly during the study; the concentration of eotaxin decreased significantly. Different impacts of exercise were seen for lymphocytes, B cells, especially the IgD(+) subpopulation of B cells and the concentrations of IP-10, RANTES and DHEA-S. We conclude that prolonged bed rest significantly impacts immune cell populations and cytokine concentrations. Exercise was able to specifically influence different immunological parameters. In summary, our data fit the hypothesis of immunoprotection by exercise and may point toward even superior effects by resistive vibration exercise.Cellular & Molecular Immunology advance online publication, 10 November 2014; doi:10.1038/cmi.2014.106.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using differential display polymerase chain reaction, a gene was identified in CD34+-enriched populations that had with low or absent expression in CD34- populations. The full coding sequence of this transcript was obtained, and the predicted protein has a high degree of homology to oxysterol-binding protein. This gene has been designated OSBP-related protein 3 (ORP-3). Expression of ORP-3 was found to be 3- to 4-fold higher in CD34+ cells than in CD34- cells. Additionally, expression of this gene was 2-fold higher in the more primitive subfraction of hematopoietic cells defined by the CD34+38- phenotype and was down-regulated with the proliferation and differentiation of CD34+ cells. The ORP-3 predicted protein contains an oxysterol-binding domain. Well-characterized proteins expressing this domain bind oxysterols in a dose-dependent fashion. Biologic activities of oxysterols include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, among them hematopoietic cells. Characterization and differential expression of ORP-3 implicates a possible role in the mediation of oxysterol effects on hematopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34+ hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zebrafish is an established model for the study of vertebrate development, and is especially amenable for investigating hematopoiesis, where there is strong conservation of key lineages, genes, and developmental processes with humans. Over recent years, zebrafish has been increasingly utilized as a model for a range of human hematopoietic diseases, including malignancies. This review provides an overview of zebrafish hematopoiesis and describes its application as a model of leukemia and other hematopoietic disorders.