39 resultados para Graph generators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facebook disseminates messages for billions of users everyday. Though there are log files stored on central servers, law enforcement agencies outside of the U.S. cannot easily acquire server log files from Facebook. This work models Facebook user groups by using a random graph model. Our aim is to facilitate detectives quickly estimating the size of a Facebook group with which a suspect is involved. We estimate this group size according to the number of immediate friends and the number of extended friends which are usually accessible by the public. We plot and examine UML diagrams to describe Facebook functions. Our experimental results show that asymmetric Facebook friendship fulfills the assumption of applying random graph models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To protect from privacy disclosure, the social network graph is modified in order to hide the information that potentially be used to disclose person's identity. However, when the social network graph is changed, it is a great challenge to balance between the privacy gained and the loss of data utility. In this paper, we address this problem. We propose a new graph topological-based metric to improve utility preservation in social network graph anonymization. We compare the proposed approach with the amount-of-edge-change metric that popularly used in most of previous works. Experimental evaluation shows that our approach generates anonymized social network with improved utility preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the modeling of the distribution network is done in a different way where the distributed generator and dynamic loads are considered. Based on this modeling, this paper presents an analysis to investigate the dynamic and static load variation effect on the distribution network. Graphical interface industry software is used to conduct all the aspects of model implementation and carry out the extensive simulation studies. Here also focuses on the worst case scenario and the different fault effect on the generator. Finally, this paper presents the voltage profile for different penetration with different network configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an optimal linear quadratic Gaussian (LQG) controller for D-STATCOM to improve the dynamic performance of distribution networks with photovoltaic generators. The controller is designed based on the H∞ norm of the uncertain system. The change in system model due to the variation of load compositions in the composite load is considered as an uncertain term in the design algorithm. The performance of the designed controller is demonstrated on a widely used test system. Simulation results indicate that the proposed controller can be a potential solution for improving the voltage stability of distribution networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new type of discriminative subgraph pattern called breaker emerging subgraph pattern by introducing three constraints and two new concepts: base and breaker. A breaker emerging sub-graph pattern consists of three subpatterns: a con-strained emerging subgraph pattern, a set of bases and a set of breakers. An efficient approach is pro-posed for the discovery of top-k breaker emerging sub-graph patterns from graph datasets. Experimental re-sults show that the approach is capable of efficiently discovering top-k breaker emerging subgraph patterns from given datasets, is more efficient than two previ-ous methods for mining discriminative subgraph pat-terns. The discovered top-k breaker emerging sub-graph patterns are more informative, more discrim-inative, more accurate and more compact than the minimal distinguishing subgraph patterns. The top-k breaker emerging patterns are more useful for sub-structure analysis, such as molecular fragment analy-sis. © 2009, Australian Computer Society, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a robust nonlinear distributed controller design for islanded operation of microgrids in order to maintain active and reactive power balance. In this paper, microgrids are considered as inverter-dominated networks integrated with renewable energy sources (RESs) and battery energy storage systems (BESSs), where solar photovoltaic generators act as RESs and plug-in hybrid electric vehicles as BESSs to supply power into the grid. The proposed controller is designed by using partial feedback linearization and the robustness of this control scheme is ensured by considering structured uncertainties within the RESs and BESSs. An approach for modeling the uncertainties through the satisfaction of matching conditions is also provided in this paper. The proposed distributed control scheme requires information from local and neighboring generators to communicate with each other and the communication among RESs, BESSs, and control centers is developed by using the concept of the graph theory. Finally, the performance of the proposed robust controller is demonstrated on a test microgrid and simulation results indicate the superiority of the proposed scheme under different operating conditions as compared to a linear-quadratic-regulator-based controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to develop a kinematic hardening effect graph (KHEG) which can be used to evaluate the effect of kinematic hardening on the model accuracy of numerical sheet metal forming simulations and this without the need of complex material characterisation. The virtual manufacturing process design and optimisation depends on the accuracy of the constitutive models used to represent material behaviour. Under reverse strain paths the Bauschinger effect phenomenon is modelled using kinematic hardening models. However, due to the complexity of the experimental testing required to characterise this phenomenon in this work the KHEG is presented as an indicator to evaluate the potential benefit of carrying out these tests. The tool is validated with the classic three point bending process and the U-channel width drawbead process. In the same way, the capability of the KHEG to identify effects in forming processes that do not include forming strain reversals is identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid advances in bionanotechnology have recently generated growing interest in identifying peptides that bind to inorganic materials and classifying them based on their inorganic material affinities. However, there are some distinct characteristics of inorganic materials binding sequence data that limit the performance of many widely-used classification methods when applied to this problem. In this paper, we propose a novel framework to predict the affinity classes of peptide sequences with respect to an associated inorganic material. We first generate a large set of simulated peptide sequences based on an amino acid transition matrix tailored for the specific inorganic material. Then the probability of test sequences belonging to a specific affinity class is calculated by minimizing an objective function. In addition, the objective function is minimized through iterative propagation of probability estimates among sequences and sequence clusters. Results of computational experiments on two real inorganic material binding sequence data sets show that the proposed framework is highly effective for identifying the affinity classes of inorganic material binding sequences. Moreover, the experiments on the structural classification of proteins (SCOP) data set shows that the proposed framework is general and can be applied to traditional protein sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphone applications are getting more and more popular and pervasive in our daily life, and are also attractive to malware writers due to their limited computing source and vulnerabilities. At the same time, we possess limited understanding of our opponents in cyberspace. In this paper, we investigate the propagation model of SMS/MMS-based worms through integrating semi-Markov process and social relationship graph. In our modeling, we use semi-Markov process to characterize state transition among mobile nodes, and hire social network theory, a missing element in many previous works, to enhance the proposed mobile malware propagation model. In order to evaluate the proposed models, we have developed a specific software, and collected a large scale real-world data for this purpose. The extensive experiments indicate that the proposed models and algorithms are effective and practical. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recommender systems have been successfully dealing with the problem of information overload. However, most recommendation methods suit to the scenarios where explicit feedback, e.g. ratings, are available, but might not be suitable for the most common scenarios with only implicit feedback. In addition, most existing methods only focus on user and item dimensions and neglect any additional contextual information, such as time and location. In this paper, we propose a graph-based generic recommendation framework, which constructs a Multi-Layer Context Graph (MLCG) from implicit feedback data, and then performs ranking algorithms in MLCG for context-aware recommendation. Specifically, MLCG incorporates a variety of contextual information into a recommendation process and models the interactions between users and items. Moreover, based on MLCG, two novel ranking methods are developed: Context-aware Personalized Random Walk (CPRW) captures user preferences and current situations, and Semantic Path-based Random Walk (SPRW) incorporates semantics of paths in MLCG into random walk model for recommendation. The experiments on two real-world datasets demonstrate the effectiveness of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discovering knowledge from unstructured texts is a central theme in data mining and machine learning. We focus on fast discovery of thematic structures from a corpus. Our approach is based on a versatile probabilistic formulation – the restricted Boltzmann machine (RBM) –where the underlying graphical model is an undirected bipartite graph. Inference is efficient document representation can be computed with a single matrix projection, making RBMs suitable for massive text corpora available today. Standard RBMs, however, operate on bag-of-words assumption, ignoring the inherent underlying relational structures among words. This results in less coherent word thematic grouping. We introduce graph-based regularization schemes that exploit the linguistic structures, which in turn can be constructed from either corpus statistics or domain knowledge. We demonstrate that the proposed technique improves the group coherence, facilitates visualization, provides means for estimation of intrinsic dimensionality, reduces overfitting, and possibly leads to better classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Named Entity Recognition (NER) is a crucial step in text mining. This paper proposes a new graph-based technique for representing unstructured medical text. The new representation is used to extract discriminative features that are able to enhance the NER performance. To evaluate the usefulness of the proposed graph-based technique, the i2b2 medication challenge data set is used. Specifically, the 'treatment' named entities are extracted for evaluation using six different classifiers. The F-measure results of five classifiers are enhanced, with an average improvement of up to 26% in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam-valving and excitation systems play an important role to maintain the transient stability of power systems with synchronous generators when power systems are subjected to large disturbances and sudden load changes. This paper presents a nonlinear adaptive backstepping approach for controlling excitation and steam-valving systems of synchronous generators. In this paper, the proposed excitation and steam-valving controllers are designed in a coordinated manner so that they can work under several and most severe operating conditions. Both excitation and steam-valving controllers are designed by considering some critical parameters as unknown. The effectiveness of the proposed coordinated control scheme is evaluated on a single machine infinite bus system under different operating conditions such as load changes and three-phase short circuit faults at the generator terminal. Finally, performance of the proposed scheme is compared to that of a similar nonlinear adaptive backstepping excitation controller without any coordination and simulation results demonstrate the superiority of the proposed one.