20 resultados para Grain orientation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is presented for calculating the parent orientation from sets of variants of orientations produced by phase transformation. The parent austenite orientation is determined using the orientations of bainite variants that transformed from a single parent austenite grain. In this approach, the five known orientation relationships are used to back transform each observed bainite variant to all their potential face-centered-cubic (f.c.c.) parent orientations. A set of potential f.c.c. orientations has one representative from each bainite variant, and each set is assembled on the basis of minimum mutual misorientation. The set of back-transformed orientations with the minimum summation of mutual misorientation angle (SMMA) is selected as the most probable parent (austenite) orientation. The availability of multiple sets permits a confidence index to be calculated from the best and next best fits to a parent orientation. The results show good agreement between the measured parent austenite orientation and the calculated parent orientation having minimum SMMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional interfacial grain boundary network in a fully austenitic high-manganese steel was studied as a function of all five macroscopic crystallographic parameters (i.e. lattice misorientation and grain boundary plane normal) using electron backscattering diffraction mapping in conjunction with focused ion beam serial sectioning. The relative grain boundary area and energy distributions were strongly influenced by both the grain boundary plane orientation and the lattice misorientation. Grain boundaries terminated by (1 1 1) plane orientations revealed relatively higher populations and lower energies compared with other boundaries. The most frequently observed grain boundaries were {1 1 1} symmetric twist boundaries with the Σ3 misorientation, which also had the lowest energy. On average, the relative areas of different grain boundary types were inversely correlated to their energies. A comparison between the current result and previously reported observations (e.g. high-purity Ni) revealed that polycrystals with the same atomic structure (e.g. face-centered cubic) have very similar grain boundary character and energy distributions. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resolved shear stress is believed to play an important role in twin formation. The present study tests this idea for an extruded magnesium alloy by examining "tension" twinning in different grain orientations. Electron backscatter diffraction analysis is employed for alloy AZ31 tested in compression along the extrusion axis to strains between 0.008 and 0.015. For heavily twinned grains, it is seen that twinning occurs on 2.3 twin systems per grain on average. The active systems are also most commonly those with, or very near to, the highest Schmid factor. The most active system in multiply twinned grains accounts on average for ∼0.6 of the twinning events. In addition, it is found that the twin habit plane falls within 6° of the K1 plane. Orientations with the highest Schmid factors (0.45-0.5) for twinning display twin aspect ratios greater by ∼40% and twin number densities greater by ∼10 times than orientations with maximum Schmid factors for twinning of 0.15-0.2. Thus the Schmid factor for twinning is seen to affect nucleation more than thickening in the present material. Viscoplastic crystal plasticity simulations are employed to obtain approximations for the resolved shear stress. Both the twin aspect ratio and number density correlate quite well with this term. The effect of the former can be assumed to be linear and that of the latter follows a power law with exponent ∼13. Increased aspect ratios and number densities are seen at low Schmid factors and this may relate to stress fluctuations, caused most probably in the present material by the stress fields at the tips of blocked twins. Overall, it is evident that the dominance of twinning on high Schmid factor systems is preserved at the low strains examined in the present work, despite the stress fluctuations known to be present. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equal channel angular processing (ECAP) technique has been applied to an automotive aluminium alloy sheet (A6111). The technique utilizes a machine that was specially designed for this purpose at Monash University. It was determined that ECAP is able to refine the grain size of the sheet, diminish the detrimental as-rolled texture components in the sheet and retain an acceptable level of bi-axial ductility such as is required during the automotive forming process. Experiments were carried out on annealed, as-received sheets that were subjected to either one or two passes through the ECAP machine. For the second ECAP pass, the sheet could be processed in the same orientation as the first pass (route A) or it could be rotated 180° about the direction of feeding (route C). It was determined that route A produced marginally improved properties compared to sheet processed via route C, and that due to the frictional heating generated during the second pass, a significant amount of recovery occurred in the sheet such that an improved combination of texture and formability resulted after two passes compared to the same sheet exposed to only a single pass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of interfaces depend not only on the lattice misorientation, but also on the interface plane orientation. Extensive studies of grain boundaries led to the conclusion that in systems evolving by grain growth, the relative areas of different grain boundary planes are inversely correlated to their relative energies. In other words, the low energy grain boundary planes make up a larger part of the population than the higher energy grain boundary planes. The hypothesis of this work is that the interface plane orientation distribution in transformed microstructures depends more on the mechanism of formation than on the relative energy. After a discussion of methods for measuring interface plane orientations, results will be presented for lath martensite in a low carbon steel and for martensite in a Ti-6Al-4V alloy processed in two different ways to promote a displacive transformation in one case and a diffusional transformation in the other.