54 resultados para GRAPHITE-EPOXY COMPOSITE ELECTRODE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A MoO3-carbon nanocomposite was synthesized from a mixture of MoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g-1 in a mixture of MoO3 and graphite (1:1 by weight), and the stable capacity of 700 mA h g-1 (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO3-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO3-carbon nanocomposite are attractive in respect to those of the reported MoO3 electrodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fabrication of superhydrophobic surfaces with mechanical durability is challenging because the surface microstructure is easily damaged. Herein, we report superhydrophobic conductive graphite nanoplatelet (GNP)/vapor-grown carbon fiber (VGCF)/polypropylene (PP) composite coatings with mechanical durability by a hot-pressing method. The as-prepared GNP/VGCF/PP composite coatings showed water contact angle (WCA) above 150° and sliding angle (SA) less than 5°. The superhydrophobicity was improved with the increase of VGCF content in the hybrid GNP and VGCF fillers. The more VGCFs added in the GNP/VGCF/PP composite coating, the higher porosity on the surface was formed. Compared to the GNP/PP and VGCF/PP composite coatings, the GNP and VGCF hybrid fillers exhibited more remarkable synergistic effect on the electrical conductivity of the GNP/VGCF/PP composite coatings. The GNP/VGCF/PP composite coating with GNP:VGCF = 2:1 possessed a sheet resistance of 1 Ω/sq. After abrasion test, the rough microstructure of the GNP/VGCF/PP (2:1) composite coating was mostly restored and the composite coating retained superhydrophobicity, but not for the VGCF/PP composite coating. When the superhydrophobic surface is mechanically damaged with a loss of superhydrophobicity, it can be easily repaired by a simple way with adhesive tapes. Moreover, the oil-fouled composite surface can regenerate superhydrophobicity by wetting the surface with alcohol and subsequently burning off alcohol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl3 and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delamination resistance and nanocreep properties of 2/2 twill weave carbon epoxy composites manufactured by hot press, autoclave, and QuickstepTM process are characterized and analyzed. Quickstep is a fluid filled, balanced pressure heated floating mold technology, which is recently developed in Perth, Western Australia for the manufacture of advanced composite components. Mode I and Mode II interlaminar fracture toughness tests, and nanoindentation creep tests on matrix materials show that the fast ramp rate of the Quickstep process provides mechanical properties comparable to that of autoclave at a lower cost for composite manufacturing. Low viscosity during ramping process and good fiber wetting are believed to be the reasons that this process produces composites with high delamination and creep-resistant properties. Nanocreep properties are analyzed using a Kelvin–Voigt model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘Melding’ is a novel in situ method for joining thermosetting composite structures, without the need of adhesives. Laminate joining is achieved using uncrosslinked resin matrix of the pre-preg. This study used Hexply914C pre-preg material to characterize melded CFRP structures produced using the melding method. A designated area of a laminate was maintained at temperatures below 40 °C retaining uncured (B-staged) material, while the remainder of the laminate was cured at 175 °C. After a 2.5 h cure cycle, the cured region showed a high degree of cure (0.88) and glass transition temperature (176 °C). The uncured area of the same laminate was cured in a second stage, simulating an in situ melded joint. By controlling the temperature and duration of the intermediate dwell and affecting minimum viscosity values prior to final cure, low values of porosity (<0.5%) were achieved. The mechanical properties of the resulting joint were consistent throughout the melded laminate. Flexural strength (1600 MPa), flexural modulus (100–105 MPa) and short beam strength (105–115 MPa) values observed where equivalent or greater than those found in the recommended autoclave cured control specimens. After the entire laminate was post cured, glass transition temperatures of 230 °C (peak tan δ) were observed in all areas of the laminate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of recent increases in fuel prices and the growing number of accident fatalities, the two major concerns of the automotive industry and their customers are now occupant safety and fuel economy {1, 2]. Increasing the amount of energy and optimizing the manner in which energy is absorbed within vehicle crush zones can improve occupant survivability in the event of a crash, while fuel economy is improved through a reduction in weight.  Axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). This paper presents results from the tests conducted at quasi-static rates at Deakin Unniversity, Victoria Australia, and intermediate rate tests performed at the Oak Ridge National Laboratory, Tennessee  USA.   The quasi-static tests were conducted at 10mm/min (1.67x10-4m/s) using 5 different forms of initiation. Tests at intermediate rates were performed at speeds of 0.25m/s, 0.5m/s, 0.75m/s 1m/s, 2m/s and 4m/s. Quasi-static tests of tubular specimens showed high specific energy absorption (SEA) values with 86 kJ/kg for Carbon/Epoxy specimens. The SEA of the Glass/Polypropylene specimens was measured to be 29 kJ/kg. Results from the intermediate test rates showed that SEA values did not fall below 55kJ/kg for carbon specimens or 35kJ/kg for the Glass/Polypropylene specimens. When compared with typical steel and aluminium, SEA values of 15 kJ/kg and 30kJ/kg respectively, the benefits of using composite materials in crash structures is apparent.                                                                     

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melding is an efficient three step composite joining process that involves the selective cure of composite adherends before the final adhesive joint is created using the adherends own resin system. Melding does not require many of the processes and compromises associated with conventional techniques like adhesive bonding and mechanical fastening.

The Taguchi design of experiments technique was used to optimise three melded joint factors for a unidirectional epoxy prepreg material. The performance of the joint was evaluated using tensile and flexural strength as well as flexural modulus. It was found that not having a step for every ply in the joint was the most influential factor affecting joint performance. This was due to the differing failure modes induced by this factors various levels, which varied the amount of fibre breakage at failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic-toughened epoxy resins are widely used as matrices in modern composite prepreg systems. Rapid curing of thermoplastic-toughened epoxy matrix composites results in different mechanical properties. To investigate the structure–property relationship, we investigated a poly(ether sulfone)-modified triglycidylaminophenol/ 4,4'-diamino diphenyl sulfone system that was cured at different heating rates. An intermediate dwell was also applied during the rapid heating of the thermoplasticmodified epoxy system. We found that a higher heating rate led to a larger domain size of the phase-separated macrostructure and also facilitated more complete phase separation. The intermediate dwell helped phase separation to proceed even further, leading to an even larger domain size of the macrostructure. A carbon-fiber-reinforced polymer matrix composite prepreg based on the poly(ether sulfone)-modified multifunctional epoxy system was cured with the same schedule. The rapidly heated composite laminates exhibited higher mode I delamination fracture toughness than the slowly heated material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67 x 10¯4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25, 0.5, 0.75, 1, 2, and 4m/s. Modes of failure and specific energy absorption (SEA) values were studied. The highest SEA measured was 86 kJ/kg. This value was observed using Carbon/Epoxy samples at quasi static rates with a 45° chamfer initiator. The highest energy absorption for Twintex tubes was observed to be 57.56 kJ/kg during 45° chamfer initiated tests at 0.25 m/s. Compared with steel and aluminium, SEA values of 15 and 30 kJ/kg, respectively, the benefits of using composite materials in crash structures become apparent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The air electrode, which reduces oxygen (O2), is a critical component in energy generation and storage applications such as fuel cells and metal/air batteries. The highest current densities are achieved with platinum (Pt), but in addition to its cost and scarcity, Pt particles in composite electrodes tend to be inactivated by contact with carbon monoxide (CO) or by agglomeration. We describe an air electrode based on a porous material coated with poly(3,4-ethylenedioxythiophene) (PEDOT), which acts as an O2 reduction catalyst. Continuous operation for 1500 hours was demonstrated without material degradation or deterioration in performance. O2 conversion rates were comparable with those of Pt-catalyzed electrodes of the same geometry, and the electrode was not sensitive to CO. Operation was demonstrated as an air electrode and as a dissolved O2 electrode in aqueous solution.