32 resultados para GRAIN SIZE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the mechanical properties and deformation twinning behaviour in high manganese steel was investigated. In order to generate different grain sizes, the samples were subjected to hot rolling, cold rolling and annealing. Room temperature tensile testing of the steel with different grain sizes (5-50 µm) indicated the occurrence of twinning induced plasticity (TWIP) in all the samples. Also, changes in work-hardening behaviour accompanied changes in the grain size. The results are discussed in terms of the enhanced sensitivity of twinning to the grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple series of test was developed to highlight and compare the difference between the static strain induced transformation (SSIT) and the dynamic strain induced transformation (DSIT) mechanism in grain refinement and also to investigate the origin of the difference between the two mechanisms. The results showed that while the SSIT sets up a two-dimensional impingement among the ferrite grains, it cannot avoid their coarsening (normal growth). However, the DSIT forms a group of grains with a three-dimensional impingement which does not coarsen and maintains their fine size throughout the transformation, thereby, reduces the final average grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of extruded AZ31, AZ61 and AM-EX1 tubes was examined in three-point bending. Different extrusion temperatures were used to investigate the effect of grain size on the load-carrying capacity, energy absorption and fracture propensity of the tubes. Results showed that while the peak load increased with a smaller average recrystallised grain size, the retention of large elongated un-recrystallised grains in the microstructure reduced the load. The presence of the large elongated grains also appeared detrimental to the ability of the tube to deform before fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation twinning behaviour in differently grain sized samples of a commercial pure titanium and a magenisum alloy is investigated. In some aspects the phenomenology of twinning differs between the two materials while in others both materials show a similar response. Nucleation density per unit of nucleating interface and twin aspect ratio scale with applied stress. The impact of grain size on twin volume fraction is modelled analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete understanding of how grain refinement, grain size, and processing affect the corrosion resistance of different alloys has not yet been fully developed. Determining a definitive 'grain size-corrosion resistance' relationship, if one exists, is inherently complex as the processing needed to achieve grain refinement also imparts other changes to the microstructure (such as texture, internal stress, and impurity segregation). This work evaluates how variation in grain size and processing impact the corrosion resistance of high purity aluminium. Aluminium samples with a range of grain sizes, from ∼100 μm to ∼2000 μm, were produced using different processing routes, including cold rolling, cryo rolling, equal channel angular pressing, and surface mechanical attrition treatment. Evaluation of all the samples studied revealed a tendency for corrosion rate to decrease as grain size decreases. This suggests that a Hall-Petch type relationship may exist for corrosion rate and grain size. This phenomenon, discussed in the context of grain refinement and processing, reveals several interesting and fundamental relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of grain size on deformation twinning in commercial purity titanium and magnesium alloy Mg–3Al–1Zn (AZ31) is investigated. Tensile tests were carried out for the titanium samples; compression testing was employed for the magnesium specimens. Average values of the true twin length, true twin thickness and the number density of twins were determined using stereology. A key difference between these two materials is that twinning contributes little to the plastic strain in the titanium while it accounts for nearly all of the early plastic strain in the magnesium. In some respects (e.g. volume fraction and number density) the phenomenology of twinning differed between the two materials, while in others (e.g. twin shape and size) both materials showed a similar response. It is found that in both materials, twins span the entirety of their parent grains only for grain sizes less than ∼30 μm. Both the nucleation density per unit of nucleating interface (i.e. grain and twin boundaries) and the aspect ratio of twins scale with applied stress. The impact of grain size on twin volume fraction is modelled analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within each columnar grain of a metallic film, the resistance to dislocation glide varies in function of the orientation of the slip plane with regard to the grain long axis. Plastic slip is impeded across grain boundaries and this contributes to the anisotropy of the overall mechanical response. A simplified (Taylor-type) crystal plasticity model is proposed that accounts for such effect of grain shape on the slip system selection. Assuming that dislocation density gradients are normal to the grain boundaries, backstresses developed at the onset of plasticity are estimated based on two definitions of the effective grain boundary spacing ‘‘seen’’ by individual slip systems. The first one reduces to the mean area-to-perimeter ratio of cross-sections of the grain cut parallel to the slip plane. Closed-form expressions of the average backstresses developed inside grains with spheroidal shapes are introduced in the crystal hardening law. The model reproduces the very high plastic anisotropy of electro-deposited pure iron with a strong c-fiber and a refined columnar grain structure [Yoshinaga, N., Sugiura, N., Hiwatashi, S., Ushioda, K., Kada, O., 2008. Deep drawability of electro-deposited pure iron having an extremely sharp h111i//ND texture. ISIJ Int. 48, 667–670]. It also provides valid estimates of the texture development and the influence of grain size on the yield strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data collection contains several optical microstructure images, EBSD maps and stress-strain curves. The research involves collecting data from samples with different grain sizes at several values of plastic strains to measure some important twinning parameters such as twin volume fraction and number of twins per grain. The aim of this study is to investigate the effect of grain size on deformation twinning behaviour in two hcp metals i.e. commercial purity titanium and AZ31 magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-Zn binary alloys with concentrations between 0 and 2.8wt% Zn have been prepared and processed via hot rolling and annealing to produce specimens with a strong basal texture and a range of grain sizes. These have been deformed in tension, a condition in which the deformation is dominated by prismatic slip. This data has been used to assess the Hall-Petch parameter as a function of Zn concentration for deformation dominated by prismatic slip. Pure magnesium showed non-linear Hall-Petch behaviour at large grain sizes, and this is compared to the values for prismatic slip measured on single crystals. The differences between critical resolved shear stress measurements made through single crystal, polycrystal and mathematical modelling techniques are also discussed.