90 resultados para Fuzzy TS model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a combination of fuzzy standard additive model (SAM) with wavelet features for medical diagnosis. Wavelet transformation is used to reduce the dimension of high-dimensional datasets. This helps to improve the convergence speed of supervised learning process of the fuzzy SAM, which has a heavy computational burden in high-dimensional data. Fuzzy SAM becomes highly capable when deployed with wavelet features. This combination remarkably reduces its computational training burden. The performance of the proposed methodology is examined for two frequently used medical datasets: the lump breast cancer and heart disease. Experiments are deployed with a five-fold cross validation. Results demonstrate the superiority of the proposed method compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. Faster convergence but higher accuracy shows a win-win solution of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study on the pedestrian's steering behaviour through a built environment in normal circumstances is presented in this paper. The study focuses on the relationship between the environment and the pedestrian's walking trajectory. Owing to the ambiguity and vagueness of the relationship between the pedestrians and the surrounding environment, a genetic fuzzy system is proposed for modelling and simulation of the pedestrian's walking trajectory confronting the environmental stimuli. We apply the genetic algorithm to search for the optimum membership function parameters of the fuzzy model. The proposed system receives the pedestrian's perceived stimuli from the environment as the inputs, and provides the angular change of direction in each step as the output. The environmental stimuli are quantified using the Helbing social force model. Attractive and repulsive forces within the environment represent various environmental stimuli that influence the pedestrian's walking trajectory at each point of the space. To evaluate the effectiveness of the proposed model, three experiments are conducted. The first experimental results are validated against real walking trajectories of participants within a corridor. The second and third experimental results are validated against simulated walking trajectories collected from the AnyLogic® software. Analysis and statistical measurement of the results indicate that the genetic fuzzy system with optimised membership functions produces more accurate and stable prediction of heterogeneous pedestrians' walking trajectories than those from the original fuzzy model. © 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a hybrid training model for interval type-2 fuzzy logic system is proposed. The hybrid training model uses extreme learning machine to tune the consequent part parameters and genetic algorithm to optimize the antecedent part parameters. The proposed hybrid learning model of interval type-2 fuzzy logic system is tested on the prediction of Mackey-Glass time series data sets with different levels of noise. The results are compared with the existing models in literature; extreme learning machine and Kalman filter based learning of consequent part parameters with randomly generated antecedent part parameters. It is observed that the interval type-2 fuzzy logic system provides improved performance with the proposed hybrid learning model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-stage hybrid model for data classification and rule extraction is proposed. The first stage uses a Fuzzy ARTMAP (FAM) classifier with Q-learning (known as QFAM) for incremental learning of data samples, while the second stage uses a Genetic Algorithm (GA) for rule extraction from QFAM. Given a new data sample, the resulting hybrid model, known as QFAM-GA, is able to provide prediction pertaining to the target class of the data sample as well as to give a fuzzy if-then rule to explain the prediction. To reduce the network complexity, a pruning scheme using Q-values is applied to reduce the number of prototypes generated by QFAM. A 'don't care' technique is employed to minimize the number of input features using the GA. A number of benchmark problems are used to evaluate the effectiveness of QFAM-GA in terms of test accuracy, noise tolerance, model complexity (number of rules and total rule length). The results are comparable, if not better, than many other models reported in the literature. The main significance of this research is a usable and useful intelligent model (i.e., QFAM-GA) for data classification in noisy conditions with the capability of yielding a set of explanatory rules with minimum antecedents. In addition, QFAM-GA is able to maximize accuracy and minimize model complexity simultaneously. The empirical outcome positively demonstrate the potential impact of QFAM-GA in the practical environment, i.e., providing an accurate prediction with a concise justification pertaining to the prediction to the domain users, therefore allowing domain users to adopt QFAM-GA as a useful decision support tool in assisting their decision-making processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic reasoning with belief (Bayesian) networks is based on conditional probability matrices. Thus it suffers from NP-hard implementations. In particular, the amount of probabilistic information necessary for the computations is often overwhelming. So, compressing the conditional probability table is one of the most important issues faced by the probabilistic reasoning community. Santos suggested an approach (called linear potential functions) for compressing the information from a combinatorial amount to roughly linear in the number of random variable assignments. However, much of the information in Bayesian networks, in which there are no linear potential functions, would be fitted by polynomial approximating functions rather than by reluctantly linear functions. For this reason, we construct a polynomial method to compress the conditional probability table in this paper. We evaluated the proposed technique, and our experimental results demonstrate that the approach is efficient and promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the increasing private participation in public projects and the critical importance of appropriate risk allocation to the success of Public-private partnership (PPP) projects justify specific research on how to establish effective risk allocation strategies in PPP projects. Partner’s risk management capability is currently the main concern to risk allocation in PPP projects. Following the transaction cost economics, it is argued that factors such as partner’s commitment and risk management structure should be considered simultaneously in order to develop effective risk allocation strategies. Based on the holistic capability-commitment governance-driven view, this paper proposed a model for generating an optimal risk allocation strategy in PPP projects. The model is demonstrated and described. An artificial intelligent technique integrated with fuzzy logic for model testing and validation is then introduced and justified. The innovative model is expected to provide a logical and complete understanding of the risk allocation strategy selection process, and to provide stakeholders with a richer framework than previously existing ones to guide their decision-making on risk allocation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been recognised that formal methods are useful as a modelling tool in requirements engineering. Specification languages such as Z permit the precise and unambiguous modelling of system properties and behaviour. However some system problems, particularly those drawn from the information systems problem domain, may be difficult to model in crisp or precise terms. It may also be desirable that formal modelling should commence as early as possible, even when our understanding of parts of the problem domain is only approximate. This thesis suggests fuzzy set theory as a possible representation scheme for this imprecision or approximation. A fuzzy logic toolkit that defines the operators, measures and modifiers necessary for the manipulation of fuzzy sets and relations is developed. The toolkit contains a detailed set of laws that demonstrate the properties of the definitions when applied to partial set membership. It also provides a set of laws that establishes an isomorphism between the toolkit notation and that of conventional Z when applied to boolean sets and relations. The thesis also illustrates how the fuzzy logic toolkit can be applied in the problem domains of interest. Several examples are presented and discussed including the representation of imprecise concepts as fuzzy sets and relations, system requirements as a series of linguistically quantified propositions, the modelling of conflict and agreement in terms of fuzzy sets and the partial specification of a fuzzy expert system. The thesis concludes with a consideration of potential areas for future research arising from the work presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, having a good flatness control in steel industry is essential to ensure an overall product quality, productivity and successful processing. Flatness error, given as difference between measured strip flatness and target curve, can be minimized by modifying roll gap with various control functions. In most practical systems, knowing the definition of the model in order to have an acceptable control is essential. In this paper, a fuzzy Petri net method for modeling and control of flatness in cold rolling mill is developed. The method combines the concepts of Petri net and fuzzy control theories. It focuses on the fuzzy decision making problems of the fuzzy rule tree structures. The method is able to detect and recover possible errors that can occur in the fuzzy rule of the knowledge-based system. The method is implemented and simulated. The results show that its error is less than that of a PI conventional controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter discusses and illustrates some potential applications of discrete-event simulation (DES) techniques in structural reliability and availability analysis, emphasizing the convenience of using probabilistic approaches in modern building and civil engineering practices. After reviewing existing literature on the topic, some advantages of probabilistic techniques over analytical ones are highlighted. Then, we introduce a general framework for performing structural reliability and availability analysis through DES. Our methodology proposes the use of statistical distributions and techniques – such as survival analysis – to model component-level reliability. Then, using failure- and repair-time distributions and information about the structural logical topology (which allows determination of the structural state from their components’ state), structural reliability, and availability information can be inferred. Two numerical examples illustrate some potential applications of the proposed methodology to achieving more reliable and structural designs. Finally, an alternative approach to model uncertainty at component level is also introduced as ongoing work. This new approach is based on the use of fuzzy rule-based systems and it allows the introduction of experts’ opinions and evaluations in our methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on a parallel hybrid electric vehicle. It first develops a model for the vehicle using the backward-looking approach where the flow of energy starts from wheels and spreads towards engine and electric motor. Next, a fuzzy logic-based strategy is developed to control the operation of the vehicle. The objectives of the controller include managing the energy flow from engine and electric motor, controlling transmission ratio, adjusting speed, and sustaining battery's state of charge. The controller examines current vehicle speed, demand torque, slope difference, state of charge of battery, and engine and electric motor rotation speeds. Then, it determines the best values for continuous variable transmission ratio, speed, and torque. A slope window scheme is also developed to take into account the look-ahead slope information and determine the best vehicle speed for better fuel economy. The developed model and control strategy are simulated. The simulation results are presented and discussed. It is shown that the use of the proposed fuzzy controller reduces fuel consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.