17 resultados para Fluvial flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A position sensorless Surface Permanent Magnet Synchronous Motor (SPMSM) drive based on single layer Recurrent Neural Network (RNN) is presented in this paper. The motor equations are written in rotor fixed d-q reference frame. A PID controller is used to process the speed error to generate the reference torque current keeping the magnetizing current fixed. The RNN estimator is used to estimate flux components along the stator fixed stationary axes. The flux angle and the reference current phasor angle are used in vector rotator to generate the reference phase currents. Hysteresis current controller block controls the switching of the three phase inverter to apply voltage to the motor stator. Simulation studies on different operating conditions indicate the acceptability of the drive system. The proposed estimator can be used to accurately measure the motor fluxes and rotor angle over a wide speed range. The proposed control scheme is robust under load torque disturbances and motor parameter variations. It is also simple and low cost to implememnt in a practical environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-13C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.