48 resultados para Finite element Analyses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on development of a method to statistically study forming and springback problems of TRansformation Induced Plasticity (TRIP) through an industrial case study. A Design of Experiments (DOE) approach was used to study the sensitivity of predictions to four user input parameters in implicit and explicit sheet metal forming codes. Numerical results were compared to experimental measurements of parts stamped in an industrial production line. The accuracy of forming strain predictions for TRIP steel were comparable with conventional steel, but the springback predictions of TRIP steel were far less accurate. The statistical importance of selected parameters for forming and springback prediction is also discussed. Changes of up to ±10% in Young's modulus and coefficient of friction were found to be insignificant in improving or deteriorating the statistical correlation of springback accuracies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tool wear has become a significant issue associated with the forming of high strength sheet steels in the automotive industry. In order to combat this problem, recent research has been devoted to utilizing the contact results obtained from current sheet metal forming software predictions, in order to develop/apply tool wear models or tool material selection criteria for use in the stamping plant. This investigation aims to determine whether a specialized sheet metal forming software package can correctly capture the complex contact conditions that occur during a typical sheet metal stamping process. The contact pressure at the die radius was compared to results obtained using a general-purpose finite element software package, for a simple channel-forming process. Although some qualitative similarities between the two predictions were observed, it was found that significant differences in the magnitude and distribution of the contact pressure exists. The reasons for the discrepancies in results are discussed with respect to the simplifications and assumptions adopted in the finite element model definitions, and with regards to other results available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper, two novel 2-D hybrid special finite elements each containing an interfacial edge crack, which lies along or vertical to the interface between two materials, are developed. These proposed elements can assure the high precision especially in the vicinity of crack tip and provide a better description of its singularity with only one hybrid element surrounding one interfacial crack, thus, the numerical modeling of fracture analysis on bi-material crack can be greatly simplified. Numerical examples are provided to demonstrate the validity and versatility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employed a systematic analysis using a 2-D hybrid special finite element containing an edge crack in order to describe the fracture behavior of spot-welds in automotive structures. The 2-D hybrid special finite element is derived form a mixed formulation with a complex potential function with the description of the singularity of a stress field. The hybrid special finite element containing an edge crack can give a better description of its singularity with only one hybrid element surrounding one crack. The advantage of this special element is that it can greatly simplify the numerical modeling of the spot welds. Some numerical examples demonstrate the validity and versatility of the present analysis method. The lap-shear, lap-tension and angle-clip specimens are analyzed and some useful fracture parameters such as the stress intensity factor and the initial direction of crack growth are obtained simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical modelling of deep drawing process is of value in preliminary process design to illustrate the influence of major variables including friction and strain hardening on punch loads, cup dimensions and process limits. In this study, analytical models including theoretical solution and a series of finite element models are developed to account for the influences of process parameters including friction coefficient, tooling geometry and material properties on deep drawing of metal cups. The accuracy of both the theoretical and finite element solutions is satisfactory compared with those from experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-scale computational and statistical strategy is presented to investigate the development of plastic strain heterogeneities and plasticity induced roughness at the free surface in multicrystalline films subjected to cyclic loading conditions, based on continuum crystal plasticity theory. The distribution of plastic strain in the grains and its evolution during cyclic straining are computed using the finite element method in films with different ratios of in-plane grain size and thickness, and as a function of grain orientation (grains with a {1 1 1} or a {0 0 1} plane parallel to the free surface and random orientations). Computations are made for 10 different realizations of aggregates containing 50 grains and one large aggregate with 225 grains. It is shown that overall cyclic hardening is accompanied by a significant increase in strain dispersion. The case of free-standing films is also addressed for comparison. The overall surface roughness is shown to saturate within 10 to 15 cycles. Plasticity induced roughness is due to the higher deformation of {0 0 1} and random grains and due to the sinking or rising at some grain boundaries.