67 resultados para Finite Element Modeling (FEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic polymer conductive network composite (IPCNC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Thus, these emerging materials have potential applications in biomimetic and biomedical devices. Whereas significant efforts have been directed toward the development of IPMC actuators, the establishment of a proper mathematical model that could effectively predict the actuators' dynamic behavior is still a key challenge. This paper presents development of an effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC) transmission line, whereas the mechanical model describes the actuator as a system of rigid links connected by spring-damping elements. The proposed modeling approach is validated by experimental data, and the results are discussed. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber irregularities are inherent to textile fibers, natural fibers in particular. This series of papers examines the impact of fiber irregularity on the mechanical behavior of textile fibers. In the first part, the effect of fiber dimensional irregularities on the tensile behavior of linear elastic fibers is examined, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude and frequency. The results indicate that increasing the level or magnitude of irregularity will decrease the breaking load, breaking elongation and method Young’s modulus of the fiber, while increasing the frequency of irregularity will decrease the breaking load and method Young’s modulus, but the breaking elongation will increase. Fiber dimensional irregularity and the gauge length effect are also simulated in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually all fibers exhibit some dimensional and structural irregularities. These include the conventional textile fibers, the high-performance brittle fibers and even the newly developed nano-fibers. In recent years, we have systematically examined the effect of fiber dimensional irregularities on the mechanical behavior of the irregular fibers. This paper extends our research to include the combined effect of dimensional and structural irregularities, using the finite element method (FEM). The dimensional irregularities are represented by sine waves with a 30 % magnitude of diameter variation while the structural irregularities are represented by longitudinal and horizontal cavities distributed within the fiber structure. The results indicate that fiber geometrical or dimensional variations have a marked influence on the tensile properties of the fiber. It affects not only the values of the breaking load and extension, but also the shape of the load-extension curves. The fiber structural irregularities simulated in this study appear to have little effect on the shape of the load-extension curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most fibers are irregular, and they are often subjected to rapid straining during mechanical processing and end-use applications. In this paper, the effect of fiber dimensional irregularities on the dynamic tensile behavior of irregular fibers is examined, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude (10%, 30% and 50% level of diameter variation). The tensile behavior of irregular fibers is examined at different strain rates (333%/sec, 3,333%/sec and 30,000%/sec). The breaking load and breaking extension of irregular fibers at different strain rates are then calculated from the finite element model. The results indicate that strain rate has a significant effect on the dynamic tensile behavior of an irregular fiber, and that the position of the thinnest segment along the fiber affects the simulation results markedly. Under dynamic conditions, an irregular fiber does not necessarily break at the thinnest segment, which is different from the quasi-static results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effect of fiber dimensional irregularities on the tensile behavior of fiber bundles is modeled, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude. The specific stress-strain curves of fiber bundles and the constituent single fibers are obtained and compared. The results indicate that fiber diameter irregularity along fiber length has a significant effect on the tensile behavior of the fiber bundle. For a bundle of uniform fibers of different diameters, all constituent fibers will break simultaneously regardless of the fiber diameter. Similarly, if fibers within a bundle have the same pattern and level of diameter irregularity along fiber length, the fibers will break at the same time also regardless of the difference in average diameter of each fiber. In these cases, the specific stress and strain curve for the bundle overlaps with that of the constituent fibers. When the fiber bundle consists of single fibers with different levels of diameter irregularity, the specific stress-strain and load-elongation curves of the fiber bundle exhibit a stepped or “ladder” shape. The fiber with the highest irregularity breaks first, even when the thinnest section of the fiber is still coarser than the diameter of a very thin but uniform fiber in the bundle. This study suggests that fiber diameter irregularity along fiber length is a more important factor than the fiber diameter itself in determining the tensile behavior of a fiber bundle consisting of irregular fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum strain experienced by the thinnest segment of a non-uniform fiber governs fiber breakage, yet this maximum strain can not be obtained from a normal single fiber test. Only the average strain of the whole fiber specimen can be obtained from a normal single fiber tensile test. This study has examined the relationship between the average strain, the maximum strain and the degree of fiber non-uniformity, expressed in coefficient of variation (CV) of fiber diameters along fiber length. The tensile strain of irregular fibers has been simulated using the finite element method (FEM). Using this method, average and maximum tensile strains of non-uniform fibers were calculated. The results indicate that for irregular fibers such as wool, there is an exponential relationship (i.e.ɛ ave ɛ max=ae −b CV ) between the ratio of average breaking strain and maximum breaking strain (ɛ ave ɛ max) and the along-fiber diameter variation (CV). The strain ratio decreases with the increase of the along-fiber diameter variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, a novel method using the special 2D finite element method (FEM) and the concept of equivalent homogeneous materials has been employed to evaluate the effective material properties of composites. Special 2D finite elements containing an internal defect or reinforcement have been well developed in order to greatly simplify the numerical modeling of composites. It can assure the high precision especially in the vicinity of defects or reinforcements in composite materials. Some numerical examples will be provided to demonstrate the validity and versatility of the proposed method by comparing the existing results from other literatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper, two novel 2-D hybrid special finite elements each containing an interfacial edge crack, which lies along or vertical to the interface between two materials, are developed. These proposed elements can assure the high precision especially in the vicinity of crack tip and provide a better description of its singularity with only one hybrid element surrounding one interfacial crack, thus, the numerical modeling of fracture analysis on bi-material crack can be greatly simplified. Numerical examples are provided to demonstrate the validity and versatility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employed a systematic analysis using a 2-D hybrid special finite element containing an edge crack in order to describe the fracture behavior of spot-welds in automotive structures. The 2-D hybrid special finite element is derived form a mixed formulation with a complex potential function with the description of the singularity of a stress field. The hybrid special finite element containing an edge crack can give a better description of its singularity with only one hybrid element surrounding one crack. The advantage of this special element is that it can greatly simplify the numerical modeling of the spot welds. Some numerical examples demonstrate the validity and versatility of the present analysis method. The lap-shear, lap-tension and angle-clip specimens are analyzed and some useful fracture parameters such as the stress intensity factor and the initial direction of crack growth are obtained simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent experiment confirmed that the infrared (IR) local heating method drastically reduces springback of dual-phase (DP) 980 sheets. In the experiment, only the plastic deformation zone of the sheets was locally heated using condensed IR heating. The heated sheets were then deformed by V-bending or 2D-draw bending. Although the experimental observation proved the merit of using the IR local heating to reduce springback, numerical modeling has not been reported. Numerical modeling has been required to predict springback and improve the understanding of the forming process. This paper presents a numerical modeling for V-bending and 2D-draw bending of DP 980 sheets exposed to the IR local heating with the finite element method (FEM). For describing the thermo-mechanical behavior of the DP 980 sheet, a flow stress model which includes a function of temperature and effective plastic strain was newly implemented into Euler-backward stress integration method. The numerical analysis shows that the IR local heating reduces the level of stress in the deformation zone, although it heats only the limited areas, and then it reduces the springback. The simulation also provides a support that the local heating method has an advantage of shape accuracy over the method to heat the material as a whole in V-bending. The simulated results of the springback in both V-bending and 2D-draw bending also show good predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object-oriented finite element method (OOFEM) has attracted the attention of many researchers. Compared with the traditional finite element method, OOFEM software has the advantages of maintenance and reuse. Moreover, it is easier to expand the architecture to a distributed one. In this paper, we introduce a distributed architecture of a object-oriented finite element preprocessor. A comparison between the distributed system and the centralised system shows that the former, presented in the paper, greatly improves the performance of mesh generation. Other finite element analysis modules could be expanded according to this architecture.