116 resultados para FUZZY-LOGIC SYSTEMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the zero-order Sugeno Fuzzy Inference System (FIS) that preserves the monotonicity property is studied. The sufficient conditions for the zero-order Sugeno FIS model to satisfy the monotonicity property are exploited as a set of useful governing equations to facilitate the FIS modelling process. The sufficient conditions suggest a fuzzy partition (at the rule antecedent part) and a monotonically-ordered rule base (at the rule consequent part) that can preserve the monotonicity property. The investigation focuses on the use of two Similarity Reasoning (SR)-based methods, i.e., Analogical Reasoning (AR) and Fuzzy Rule Interpolation (FRI), to deduce each conclusion separately. It is shown that AR and FRI may not be a direct solution to modelling of a multi-input FIS model that fulfils the monotonicity property, owing to the difficulty in getting a set of monotonically-ordered conclusions. As such, a Non-Linear Programming (NLP)-based SR scheme for constructing a monotonicity-preserving multi-input FIS model is proposed. In the proposed scheme, AR or FRI is first used to predict the rule conclusion of each observation. Then, a search algorithm is adopted to look for a set of consequents with minimized root means square errors as compared with the predicted conclusions. A constraint imposed by the sufficient conditions is also included in the search process. Applicability of the proposed scheme to undertaking fuzzy Failure Mode and Effect Analysis (FMEA) tasks is demonstrated. The results indicate that the proposed NLP-based SR scheme is useful for preserving the monotonicity property for building a multi-input FIS model with an incomplete rule base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two issues relating to modeling of a monotonicity-preserving Fuzzy Inference System (FIS) are examined. The first is on designing or tuning of Gaussian Membership Functions (MFs) for a monotonic FIS. Designing Gaussian MFs for an FIS is difficult because of its spreading and curvature characteristics. In this study, the sufficient conditions are exploited, and the procedure of designing Gaussian MFs is formulated as a constrained optimization problem. The second issue is on the testing procedure for a monotonic FIS. As such, a testing procedure for a monotonic FIS model is proposed. Applicability of the proposed approach is demonstrated with a real world industrial application, i.e., Failure Mode and Effect Analysis. The results obtained are analysis and discussed. The outcomes show that the proposed approach is useful in designing a monotonicity-preserving FIS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important and difficult issue in designing a Fuzzy Inference System (FIS) is the specification of fuzzy sets and fuzzy rules. In this paper, two useful qualitative properties of the FIS model, i.e., the monotonicity and sub-additivity properties, are studied. The monotonic sufficient conditions of the FIS model with Gaussian membership functions are further analyzed. The aim is to incorporate the sufficient conditions into the FIS modeling process, which serves as a simple (which can be easily understood by domain users), easy-to-use (which can be easily applied to or can be a part of the FIS model), and yet reliable (which has a sound mathematical foundation) method to preserve the monotonicity property of the FIS model. Another aim of this paper is to demonstrate how these additional qualitative information can be exploited and extended to be part of the FIS designing procedure (i.e., for fuzzy sets and fuzzy rules design) via the sufficient conditions (which act as a set of useful governing equations for designing the FIS model). The proposed approach is able to avoid the "trial and error" procedure in obtaining a monotonic FIS model. To assess the applicability of the proposed approach, two practical problems are examined. The first is an FIS-based model for water level control, while the second is an FIS-based Risk Priority Number (RPN) model in Failure Mode and Effect Analysis (FMEA). To further illustrate the importance of the sufficient conditions as the governing equations, an analysis on the consequences of violating the sufficient conditions of the FIS-based RPN model is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an Evolutionary-based Similarity Reasoning (ESR) scheme for preserving the monotonicity property of the multi-input Fuzzy Inference System (FIS) is proposed. Similarity reasoning (SR) is a useful solution for undertaking the incomplete rule base problem in FIS modeling. However, SR may not be a direct solution to designing monotonic multi-input FIS models, owing to the difficulty in getting a set of monotonically-ordered conclusions. The proposed ESR scheme, which is a synthesis of evolutionary computing, sufficient conditions, and SR, provides a useful solution to modeling and preserving the monotonicity property of multi-input FIS models. A case study on Failure Mode and Effect Analysis (FMEA) is used to demonstrate the effectiveness of the proposed ESR scheme in undertaking real world problems that require the monotonicity property of FIS models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are used in health monitoring, tracking and security applications. Such networks transfer data from specific areas to a nominated destination. In the network, each sensor node acts as a routing element for other sensor nodes during the transmission of data. This can increase energy consumption of the sensor node. In this paper, we propose a routing protocol for improving network lifetime and performance. The proposed protocol uses type-2 fuzzy logic to minimize the effects of uncertainty produced by the environmental noise. Simulation results show that the proposed protocol performs better than a recently developed routing protocol in terms of extending network lifetime and saving energy and also reducing data packet lost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete and monotonically-ordered fuzzy rule base is necessary to maintain the monotonicity property of a Fuzzy Inference System (FIS). In this paper, a new monotone fuzzy rule relabeling technique to relabel a non-monotone fuzzy rule base provided by domain experts is proposed. Even though the Genetic Algorithm (GA)-based monotone fuzzy rule relabeling technique has been investigated in our previous work [7], the optimality of the approach could not be guaranteed. The new fuzzy rule relabeling technique adopts a simple brute force search, and it can produce an optimal result. We also formulate a new two-stage framework that encompasses a GA-based rule selection scheme, the optimization based-Similarity Reasoning (SR) scheme, and the proposed monotone fuzzy rule relabeling technique for preserving the monotonicity property of the FIS model. Applicability of the two-stage framework to a real world problem, i.e., failure mode and effect analysis, is further demonstrated. The results clearly demonstrate the usefulness of the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new online updating framework for constructing monotonicity-preserving Fuzzy Inference Systems (FISs) is proposed. The framework encompasses an optimization-based Similarity Reasoning (SR) scheme and a new monotone fuzzy rule relabeling technique. A complete and monotonically-ordered fuzzy rule base is necessary to maintain the monotonicity property of an FIS model. The proposed framework attempts to allow a monotonicity-preserving FIS model to be constructed when the fuzzy rules are incomplete and not monotonically-ordered. An online feature is introduced to allow the FIS model to be updated from time to time. We further investigate three useful measures, i.e., the belief, plausibility, and evidential mass measures, which are inspired from the Dempster- Shafer theory of evidence, to analyze the proposed framework and to give an insight for the inferred outcomes from the FIS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though the importance of the local monotonicity property for function approximation problems is well established, there are relative few investigations addressing issues related to the fulfillment of the local monotonicity property in Fuzzy Inference System (FIS) modeling. We have previously conducted a preliminary study on the local monotonicity property of FIS models, with the assumption that the extrema point(s) (i.e., the maximum and/or minimum point(s)) is either known precisely or totally unknown. However, in some practical situations, the extrema point(s) can be known imprecisely (as an interval or a fuzzy set). In this paper, the imprecise information is exploited to construct an FIS model that fulfills the local monotonicity property. A procedure to estimate the extrema point(s) of a function is devised. Applicability of the findings to a datadriven modeling problem is further demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of polymerization reactors is a challenging issue for researchers due to the complex reaction mechanisms. A lot of reactions occur simultaneously during polymerization. This leads to a polymerization system that is highly nonlinear in nature. In this work, a nonlinear advanced controller, named fuzzy logic controller (FLC), is developed for monitoring the batch free radical polymerization of polystyrene (PS) reactor. Temperature is used as an intermediate control variable to control polymer quality, because the products quality and quantity of polymer are directly depends on temperature. Different FLCs are developed through changing the number of fuzzy membership functions (MFs) for inputs and output. The final tuned FLC results are compared with the results of another advanced controller, named neural network based model predictive controller (NN-MPC). The simulation results reveal that the FLC performance is better than NN-MPC in terms of quantitative and qualitative performance criterion.