30 resultados para FREE-RADICALS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results from the thesis confirm that canola oil ingestion shortens the lifespan of stroke prone rats. This life shortening effect associated with canola oil may be due to negative changes in the level of free radicals, antioxidants and blood fats. The situation is even worse when canola oil and salt are combined in the diet as blood vessel function is impaired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Though ZnO nanoparticles (NPs) are an excellent UV absorber, their photocatalytic activity greatly limits the application areas of these particles. Under sunlight exposure, ZnO NPs used as a UV absorber can accelerate the wool yellowing process by generating free radicals. To reduce this photocatalysis effect, a physical barrier has been fabricated by coating the ZnO NPs with a silica layer (ZnO@SiO2), hence providing good UV-shielding with low photocatalytic activity. The structure and optical properties of ZnO and ZnO@SiO2 NPs were characterized by transmission electron microscope (TEM) and UV–Vis spectrum. The photocatalytic activity of ZnO and ZnO@SiO2 NPs was evaluated by photo-degradation of Rhodamine B. The ZnO and ZnO@SiO2 NPs were applied to knitted wool fabrics using the dip coating method. The treated wool fabrics were characterized by a scanning electron microscope (SEM) and the photoyellowing level of treated fabrics after exposure under simulated sunlight was evaluated by a Datacolor Spectraflash spectrophotometer. The ZnO@SiO2 NPs demonstrated excellent protection of wool against photoyellowing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a "shoulder" sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-μM/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (•)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for natural antioxidants is an ongoing endeavour as an aid to combat the harmful effects of free radicals. Research advances in the past few decades have shown that, by controlled enzymatic hydrolysis, natural antioxidants can be produced from food proteins. In this chapter, the role of certain antioxidative peptides derived from food proteins is discussed in relation to their prospect in the prevention of oxidative stress. The molecular diversity of these food peptides is described together with their pharmacological effects and mechanisms of action in relation to antioxidation. The production of these peptides and the elucidation of their antioxidative peptides are also presented. Owing to their therapeutic potential, antioxidative peptides derived from food proteins can be incorporated as ingredients in functional foods, nutraceuticals and pharmaceuticals, where their biological activities may inhibit product oxidation or assist in the control and prevention of diseases induced by free radicals. However, further insightful research is needed to overcome certain scientific challenges and thereby increase and promote consumer acceptance of these natural antioxidants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: There is accumulating evidence that progressive changes in brain structure and function take place as schizophrenia unfolds. Among many possible candidates, oxidative stress may be one of the mediators of neuroprogression, grey matter loss and subsequent cognitive and functional impairment. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative stress or its consequences. They may act from directly scavenging free radicals to increasing anti-oxidative defences. There is evidence that current treatments impact oxidative pathways and may to some extent reverse pro-oxidative states in schizophrenia. The existing literature, however, indicates that these treatments do not fully restore the deficits in antioxidant levels or restore levels of oxidants in schizophrenia. As such, there has been interest in developing interventions aimed at restoring this oxidative balance beyond the benefits of antipsychotics in this direction. If antioxidants are to have a place in the treatment of this serious condition, the relevant and up-to-date information should be available to clinicians and investigators. Objectives: To evaluate the effect of antioxidants as add-on treatments to standard antipsychotic medication for improving acute psychotic episodes and core symptoms, and preventing relapse in people with schizophrenia. Search methods: We searched the Cochrane Schizophrenia Group's Study-Based Register of Trials which is based on regular searches of CINAHL, BIOSIS, AMED, Embase, PubMed, MEDLINE, PsycINFO, and registries of clinical trials. There are no language, time, document type, or publication status limitations for inclusion of records in the register. We ran this search in November 2010, and again on 8 January 2015. We also inspected references of all identified studies for further trials and contacted authors of trials for additional information. Selection criteria: We included reports if they were randomised controlled trials (RCTs) involving people with schizophrenia who had been allocated to either a substance with antioxidant potential or to a placebo as an adjunct to standard antipsychotic treatment. Data collection and analysis: We independently extracted data from these trials and we estimated risk ratios (RR) or mean differences (MD), with 95% confidence intervals (CI). We assessed risk of bias for included studies and created a 'Summary of findings' table using GRADE. Main results: The review includes 22 RCTs of varying quality and sample size studying Ginkgo biloba, N-acetyl cysteine (NAC), allopurinol, dehydroepiandrosterone (DHEA), vitamin C, vitamin E or selegiline. Median follow-up was eight weeks. Only three studies including a minority of the participants reported our a priori selected primary outcome of clinically important response. Short-term data for this outcome (measured as at least 20% improvement in scores on Positive and Negative Syndrome Scale (PANSS)) were similar (3 RCTs, n = 229, RR 0.77, 95% CI 0.53 to 1.12, low quality evidence). Studies usually reported only endpoint psychopathology rating scale scores. Psychotic symptoms were lower in those using an adjunctive antioxidant according to the PANSS ( 7 RCTS, n = 584, MD -6.00, 95% CI -10.35 to -1.65, very low quality evidence) and the Brief Psychiatric Rating Scale (BPRS) (8 RCTS, n = 843, MD -3.20, 95% CI -5.63 to -0.78, low quality evidence). There was no overall short-term difference in leaving the study early (16 RCTs, n = 1584, RR 0.73, 95% CI 0.48 to 1.11, moderate quality evidence), or in general functioning (2 RCTs, n = 52, MD -1.11, 95% CI -8.07 to 5.86, low quality evidence). Adverse events were generally poorly reported. Three studies reported useable data for 'any serious adverse effect', results were equivocal (3 RCTs, n = 234, RR 0.65, 95% CI 0.19 to 2.27, low quality evidence). No evidence was available for relapse, quality of life or service use. Authors' conclusions: Although 22 trials could be included in this review, the evidence provided is limited and mostly not relevant to clinicians or consumers. Overall, although there was low risk of attrition and selective data reporting bias within the trials, the trials themselves were not adequately powered and need more substantial follow-up periods. There is a need for larger trials with longer periods of follow-up to be conducted. Outcomes should be meaningful for those with schizophrenia, and include measures of improvement and relapse (not just rating scale scores), functioning and quality of life and acceptability and, importantly, safety data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The legume Arachis hypogaea, commonly known as peanut or groundnut, is a very important food crop throughout the tropics and subtropics. Peanut is one of the most widely used legumes due to its nutrition and taste, and it occupies a rank of major oilseed crop in the world. It has been recognized as a functional food due to its role in a health promoting effect. Peanut oil contains a well-balanced fatty acid and antioxidant profile that provide protection against harmful substances especially free radicals. This paper gives an overview of scientific literature available on phytochemical and functional properties of peanut oil. Owing to its unique organoleptic properties associated with its cardioprotective and anti-inflammatory properties, peanut oil has found, recently, its place on the highly competitive international edible oil market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity was conducted using purified balsamin. DNase-like activity of balsamin towards plasmid DNA was pH, incubation time and temperature dependent. Moreover, the presence of Mg(2+) (10-50 mM) influenced the DNA cleavage activity. Balsamin also demonstrated reducing power and a capacity to scavenge free radicals in a dose dependent manner. Furthermore, the protein exhibited antibacterial activity against Staphylococcus aureus, Salmonella enterica, Staphylococcus epidermidis and Escherichia coli, which suggests potential utility of balsamin as a nutraceutical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additions of one to two equivalents of Lewis acids that include magnesium salts to free-radical reduction reactions involving ester functionalized radicals and (1R,2S,5R)-menthyldiphenyltin hydride 4, bis((1R,2S,5R)-menthyl)phenyltin hydride 5, tris((1R,2S,5R)-menthyl)tin hydride 6, bis((1R,2S,5R)-menthyl)-[8-(N,N-dimethylamino)naphthyl]tin hydride 12, bis((1R,2S,5R)-menthyl)-[1-((S)-N,N-dimethylaminoethyl)phenyl]tin hydride 13 or 3α-dimethylstannyl-5α-cholestane 14 result in remarkable enantioselectivities. Examples include (S)-naproxen ethyl ester 16, produced in 74% yield and greater than 99% ee at −78°C from the bromide and 5 in the presence of MgBr2, and ethyl (R)-N-trifluoroacetyl-D-phenylglycinate 18, obtained in 78% yield and 99% ee under identical conditions. Kinetic and computational studies provide insight into the origins of these observations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

(1R,2S,5R)-Menthyldiphenylgermane and its enantiomer have been prepared in a few steps from germanium tetrachloride. The initial step in this sequence, namely the reaction between germanium tetrachloride and menthylmagnesium chloride, produces menthylgermanium trichloride, which is the exclusive product of this Grignard reaction, presumably due to the bulk of the menthyl group. When used at a low temperature (−78 °C) and in conjunction with Lewis acids, such as magnesium salts, these chiral germanes are capable of reducing ester functionalized radicals in high enantioselectivity, but in low-moderate yield. For example, (R)-naproxen ethyl ester was obtained in 15% yield and 99% ee by reaction in toluene of 2-bromonaproxen ethyl ester with (1R,2S,5R)-menthyldiphenylgermane in toluene at −78 °C in the presence of magnesium bromide. At 80 °C, (1R,2S,5R)-menthyldiphenylgermane reacted with primary alkyl radicals with a rate constant of 1.02 × 106 M−1 s−1. Kinetic studies reveal the Arrhenius expression for this reaction to be: log(k/M−1 s−1) = (11.1 ± 0.4) − (34.6 ± 3.1)/θ where θ=2.3RT kJ mol−1.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.