17 resultados para Epidermal growth factor (EGF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the injured adult nervous system, re-establishment of growth-promoting molecular gradients is known to entice and guide nerve repair. However, incorporation of three-dimensional chemotactic gradients in nerve repair scaffolds, particularly in those with multi-luminal architectures, remains extremely challenging. We developed a method that establishes highly tunable three-dimensional molecular gradients in collagen-filled multi-luminal nerve guides by anchoring growth-factor releasing coiled polymeric fibers onto the walls of collagen-filled hydrogel microchannels. Differential pitch in the coiling of neurotrophin-eluting fibers generated sustained three-dimensional chemotactic gradients that appropriately induced the differentiation of Pheochromocytoma (PC12) cells into neural-like cells along an increasing concentration of nerve growth factor (NGF). Computer modeling estimated the stability of the molecular gradient within the luminal collagen, which we confirmed by observing the significant effects of neurotrophin gradients on axonal growth from dorsal root ganglia (DRG). Neurons growing in microchannels exposed to a NGF gradient showed a 60% increase in axonal length compared to those treated with a linear growth factor concentration. In addition, a two-fold increment in the linearity of axonal growth within the microchannels was observed and confirmed by a significant reduction in the turning angle ratios of individual axons. These data demonstrate the ability of growth factor-loaded polymeric coiled fibers to establish three-dimensional chemotactic gradients to promote and direct nerve regeneration in the nervous system and provides a unique platform for molecularly guided tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The neurotrophic hypothesis of major depressive disorder (MDD) postulates that the pathology of this illness incorporates a down-regulation of neurotrophin signaling. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic mediator regarding the neurobiology of MDD. Nevertheless, emerging evidence has implicated the multi-competent angiogenic and neurogenic molecule - vascular endothelial growth factor (VEGF) - in hippocampal neurogenesis and depression pathophysiology. OBJECTIVE: To compare peripheral levels of VEGF between individuals with MDD and healthy controls. METHODS: We performed a systematic review and meta-analysis of original studies measuring peripheral levels of VEGF in participants with MDD compared to healthy controls. We searched the Pubmed/MEDLINE, EMBASE and PsycInfo databases for studies published in any language through December 16th, 2014. RESULTS: Fourteen studies met eligibility criteria (N=1633). VEGF levels were significantly elevated in individuals with MDD when compared to healthy controls (Hedges's g=0.343; 95% CI: 0.146-0.540; P<0.01). Funnel plot inspection and the Egger's test did not provide evidence of publication bias. A significant degree of heterogeneity was observed (Q=38.355, df=13, P<0.001; I(2)=66.1%), which was explored through meta-regression and subgroup analyses. Overall methodological quality, sample for assay (plasma versus serum), as well as the matching of MDD and control samples for age and gender emerged as significant sources of heterogeneity. CONCLUSIONS: Taken together, extant data indicate that VEGF shows promise as a biomarker for MDD, and supports that this mediator may be involved in neuroplasticity mechanisms underlying the pathophysiology of MDD.