19 resultados para Environmental accounting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the relationships between the sensations of sweaty, damp, muggy and clingy, as assessed by human response from wearer trial garment assessment, and fiber type, fiber, yarn and fabric properties and instrumental fabric measurements of next-to-skin knitwear. Wearer trial assessment of 48 fabrics followed a strict 60 minute protocol including a range of environmental conditions and levels of exercise. Adjusted mean weighted scores were determined using linked garments. Instrumental fabric handle measurements were determined with the Wool HandleMeter (WHM) and Wool ComfortMeter. Data were analyzed using forward stepwise general linear modeling. Mean fiber diameter (MFD) affected the sweaty, damp, muggy and clingy sensation responses accounting for between 23.5% and 56.2% of the variance of these sensations. In all cases, finer fibers were associated with lower sensation scores (preferred). There were also effects of fiber type upon sweaty, muggy and clingy scores, with polyester fiber fabrics having higher scores (less preferred) compared with fabrics composed of wool, particularly for peak sweaty scores in hot and active environments. Attributes such as fabric density, yarn linear density, knitting structure and finishing treatments, but not fabric thickness, accounted for some further variance in these attributes once MFD had been taken into account. This is explained as finer fibers have a greater surface area for any given mass of fiber and so finer fibers can act as a more effective sink for moisture compared with coarser fibers. No fabric handle parameter or other attribute of fiber diameter distribution was significant in affecting these sensation scores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Construction contractors and facility managers are being challenged to minimize the carbon footprint. Life cycle carbon‐equivalent (CO2‐e) accounting, whereby the potential emissions of greenhouse gases due to energy expenditure during construction and subsequent occupation of built infrastructure, generally ceases at the end of the service life. However, following demolition, recycling of demolition waste that becomes incorporated into 2nd generation construction is seldom considered within the management of the carbon footprint. This paper aims to focus on built concrete infrastructure, particularly the ability of recycled concrete to chemically react with airborne CO2, thereby significantly influencing CO2‐e estimates.

Design/methodology/approach – CO2‐e estimates were made in accordance with the methodology outlined in the Australian National Greenhouse Accounts (NGA) Factors and were based on the energy expended for each life cycle activity from audited records. Offsets to the CO2‐e estimates were based on the documented ability of concrete to chemically react with airborne carbon dioxide (“carbonation”) and predictions of CO2 uptake by concrete and recycled concrete was made using existing predictive diffusion models. The author's study focused on a built concrete bridge which was demolished and recycled at the end of the service life, and the recycled concrete was utilized towards 2nd generation construction. The sensitivity of CO2‐e and carbonation estimates were tested on several different types of source demolition waste as well as subsequent construction applications using recycled concrete (RCA). Whole‐of‐life CO2‐e estimates, including carbonation of RCA over the 1st and 2nd generations, were estimated and contrasted with conventional carbon footprints that end at the conclusion of the 1st generation.

Findings – Following demolition, CO2 capture by RCA is significant due to the more permeable nature of the crushed RCA compared with the original built infrastructure. RCA also has considerably greater exposed surface area, relative to volume, than a built concrete structure, and therefore more highly exposed surface to react with CO2: it therefore carbonates more comprehensively. CO2‐e estimates can be offset by as much as 55‐65 per cent when including the contribution of carbonation of RCA built within 2nd generation infrastructure. Further offsets are achievable using blended fly ash or slag cement binders; however, this study has focused on concrete composed of 100 per cent OPC binders and the effects of RCA.

Originality/value – Construction project estimates of life cycle CO2‐e emissions should include 2nd generation applications that follow the demolition of the 1st generation infrastructure. Life cycle estimates generally end at the time of demolition. However, by incorporating the recycled concrete demolition waste into the construction of 2nd generation infrastructure, the estimated CO2‐e is significantly offset during the 2nd generation life cycle by chemical uptake of CO2 (carbonation). This paper provides an approach towards inclusion of 2nd generation construction applications into whole‐of‐life estimates of CO2‐e.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plantings of mixed native species (termed 'environmental plantings') are increasingly being established for carbon sequestration whilst providing additional environmental benefits such as biodiversity and water quality. In Australia, they are currently one of the most common forms of reforestation. Investment in establishing and maintaining such plantings relies on having a cost-effective modelling approach to providing unbiased estimates of biomass production and carbon sequestration rates. In Australia, the Full Carbon Accounting Model (FullCAM) is used for both national greenhouse gas accounting and project-scale sequestration activities. Prior to undertaking the work presented here, the FullCAM tree growth curve was not calibrated specifically for environmental plantings and generally under-estimated their biomass. Here we collected and analysed above-ground biomass data from 605 mixed-species environmental plantings, and tested the effects of several planting characteristics on growth rates. Plantings were then categorised based on significant differences in growth rates. Growth of plantings differed between temperate and tropical regions. Tropical plantings were relatively uniform in terms of planting methods and their growth was largely related to stand age, consistent with the un-calibrated growth curve. However, in temperate regions where plantings were more variable, key factors influencing growth were planting width, stand density and species-mix (proportion of individuals that were trees). These categories provided the basis for FullCAM calibration. Although the overall model efficiency was only 39-46%, there was nonetheless no significant bias when the model was applied to the various planting categories. Thus, modelled estimates of biomass accumulation will be reliable on average, but estimates at any particular location will be uncertain, with either under- or over-prediction possible. When compared with the un-calibrated yield curves, predictions using the new calibrations show that early growth is likely to be more rapid and total above-ground biomass may be higher for many plantings at maturity. This study has considerably improved understanding of the patterns of growth in different types of environmental plantings, and in modelling biomass accumulation in young (<25 years old) plantings. However, significant challenges remain to understand longer-term stand dynamics, particularly with temporal changes in stand density and species composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods: Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian metaregression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings: All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation: Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.