137 resultados para Down-milling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the significant role that writing plays in research. We argue that too often writing is oversimplified, consigned to the final 'stage' of a research 'process' and designated as 'writing up'. Research methodology textbooks rarely discuss writing as integral to research practice. The advice postgraduate students receive not only glosses over the difficulties of constructing an extended argument but also of working within the genres and power relations required by the academy. In this paper we examine a selection of research methodology texts to see how the notion of 'writing up' is constructed and with what effects. We offer an alternative view of writing as research and research as writing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling system has been used to create nanosized patterns as the template for patterned growth of carbon nanotubes on Si substrate surface without predeposition of metal catalysts. Carbon nanotubes only nucleate and grow on the template under controlled pyrolysis of iron phthalocyanine at 1000 °C. The size, growth direction, and density of the patterned nanotubes can be controlled under different growth conditions and template sizes. Atomic force microscopy and electron microscopy analyses reveal that the selective growth on the FIB template is due to its special surface morphology and crystalline structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires represent a new class of ZnO morphologies with many exiting new properties and applications. The research in the synthesis and characterization of ZnO nanowires has received enormous attention in recent years. However, most synthesis methods using vapor deposition process can only produce small amount of sample, mass production has not been achieved yet. Large-quantity production of ZnO nanowires needs to be realized for large-scale property and application studies. One of the promising approaches to the large scale synthesis is a ball-milling and annealing method. This paper first introduces several common synthesis methods of ZnO nanowires and then summarizes the one dimensional nanomaterials produced by the ball milling and annealing method. Finally, some preliminary results of ZnO nanowire synthesis are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A boron nitride (BN) nanostructure, conical BN nanorod, has been synthesized in a large quantity on Si substrates for the first time via the ball-milling and annealing method. Nitridation of milled boron carbide (B4C) powders was performed in nitrogen gas at 1300°C on the surface of the substrates to form the BN nanorods. The highly crystallized nanorods consist of conical BN basal layers stacked along the nanorod axis. Ball milling of the B4C powders can significantly enhance the nitridation of the powders and thus facilitate the formation of nanorods during the annealing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO powder was mechanically milled in a ball mill. This procedure was found to greatly increase its evaporation ability. The anomalous evaporation behaviour was caused by the disordered structure of the milled material and was not related to the increase in its surface area after milling. ZnO nanowires were synthesized by evaporation of this milled precursor. Nanowires with smooth and rough surfaces were present in the sample; the latter morphology was dominant. A green emission band centred at 510 nm was dominant in the cathodoluminescence spectrum of the nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional (1D) nanomaterials including nanotubes, nanowires and nanorods have many new properties, functionalities and a large range of promising applications. A major challenge for these future industrial applications is the large-quantity production. We report that the ball milling and annealing process has the potential to achieve the mass production. Several examples including C, BN nanotubes and SiC, Zn nanowires are presented to demonstrate such capability. In addition, both size and structure of 1D nanomaterials can be controlled by varying processing conditions. New growth mechanisms involved in the process have been investigated and the high-energy ball milling has an important role in the formation of these 1D nanomaterials.