37 resultados para Double layer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements are presented of the force as a function of separation between two molecularly smooth mica surfaces immersed in ethylene glycol, and in solutions of lithium chloride and sulfuric acid in ethylene glycol. At surface separations greater than 3 nm the measured force is in very good agreement with double-layer theory, but at smaller separations there is an oscillatory solvation force which is superimposed on the double-layer repulsion. In contrast to the case in water, the adsorption of hydrogen ions at the mica surface does not markedly affect the short-range forces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forces between mica surfaces immersed in Me4NBr, Pr4NBr, and Pe4NBr solutions over a wide concentration range are reported (Me = methyl, Pr = propyl, Pe = pentyl). In each case the cation adsorbs quite strongly onto the negatively charged mica surface and determines the double-layer potential. However, this strong adsorption does not cause complete neutralization of the negative lattice charge apparently because of packing constraints due to the large size of these ions. Adsorption of Me4N+ ions gives rise to a short-range (<2 nm) repulsive force similar to that previously observed between bilayers of CTAB and may be due to the residual hydration of these ions. The large rations also, unexpectedly, give rise to short-range repulsive forces but of a somewhat different nature. In this case, the repulsive forces can be explained by assuming that the large adsorbed ions shift the plane of charge a distance of one ion diameter from the mica surface. At all but very high concentrations these larger ions could be displaced from the mica surfaces on forcing them together. No evidence of any “hydrophobic attraction” was observed between surfaces containing these adsorbed ions. Previous studies on coagulation are discussed in the light of our results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of three thiol compounds formed on mercury are investigated by a combination of cyclic voltammetry, electrocapillary curves, and a novel method of measuring electrical doublelayer properties. The last method involves a modified surface force apparatus in which a flat mica surface is pressed down toward a fixed mercury drop held beneath it, while both are immersed in aqueous electrolyte solution. Optical interference measurements are made of the mica-mercury separation as a function of electrical potential applied to the mercury, which yields information on the double-layer interaction between the two surfaces. Mercury is decorated by SAMs of 11-mercapto-1-undecanoic acid, which is shown to bring negative charge to the mercury/aqueous interface due to dissociation of the carboxylic acid groups; 11-mercapto-1- undecanol, which although it is uncharged changes the dipole potential of the interface; and 1-undecanethiol, which likewise changes the dipole potential, but by a different amount. The difference between the changes in dipole potential (90 mV) can be related to the different terminal groups of these two SAMs, -CH3 compared to -OH, that are in contact with the aqueous phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A stable aqueous electrolyte film is formed between a mercury drop and a flat mica surface due to electrical double-layer repulsion when a negative potential is applied to the mercury. Film thickness has been measured as a function of applied potential while keeping the film pressure constant. By making measurements in this way, it is possible to map the data directly according to the Poisson-Boltzmann equation. An excellent fit to the data is obtained, providing direct evidence for this classical equation and its use as the basis of the Gouy-Chapman model of the diffuse double layer in electrolyte solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate measurements of the shape of a mercury drop separated from a smooth flat solid surface by a thin aqueous film reported recently by Connor and Horn (Faraday Discuss. 2003, 123, 193-206) have been analyzed to calculate the excess pressure in the film. The analysis is based on calculating the local curvature of the mercury/aqueous interface, and relating it via the Young-Laplace equation to the pressure drop across the interface, which is the difference between the aqueous film pressure and the known internal pressure of the mercury drop. For drop shapes measured under quiescent conditions, the only contribution to film pressure is the disjoining pressure arising from double-layer forces acting between the mercury and mica surfaces. Under dynamic conditions, hydrodynamic pressure is also present, and this is calculated by subtracting the disjoining pressure from the total film pressure. The data, which were measured to investigate the thin film drainage during approach of a fluid drop to a solid wall, show a classical dimpling of the mercury drop when it approaches the mica surface. Four data sets are available, corresponding to different magnitudes and signs of disjoining pressure, obtained by controlling the surface potential of the mercury. The analysis shows that total film pressure does not vary greatly during the evolution of the dimple formed during the thin film drainage process, nor between the different data sets. The hydrodynamic pressure appears to adjust to the different disjoining pressures in such a way that the total film pressure is maintained approximately constant within the dimpled region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an experiment designed to measure surface and hydrodynamic forces between a mercury drop and a flat mica surface immersed in an aqueous medium. An optical interference technique allows measurement of the shape of the mercury drop as well as its distance from the mica, for various conditions of applied potential, applied pressure, and solution conditions. This enables a detailed exploration of the surface forces, particularly double-layer forces, between mercury and mica. A theoretical analysis of drop shape under the influence of surface forces shows that deformation of the drop is a sensitive indicator of the forces, as well as being a very important factor in establishing the overall interaction between the solid and the fluid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements are presented of the electrical double layer and van der Waals forces between the (0001) surfaces of two single-crystal sapphire platelets immersed in an aqueous solution of NaCl at pH values from 6.7 to 11. The results fit the standard Deryaguin-Landau-Verwey-Overbeek (DLVO) theory, with a Hamaker constant of 6.7 × 10−20 J. These are the first measurements made using the Israelachvili surface forces apparatus without mica as a substrate material, and they demonstrate the possibility of using this technique to explore the surface chemistry of a wider range of materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article reports real-time observations and detailed modeling of the transient response of thin aqueous films bounded by a deformable surface to external mechanical and electrical perturbations. Such films, tens to hundreds of nanometers thick, are confined between a molecularly smooth mica plate and a deformable mercury/electrolyte interface on a protuberant drop at a sealed capillary tube. When the mercury is negatively charged, the water forms a wetting film on mica, stabilized by electrical double layer forces. Mechanical perturbations are produced by driving the mica plate toward or by retracting the mica plate from the mercury surface. Electrical perturbations are applied to change the electrical double layer interaction between the mica and the mercury by imposing a step change of the bias voltage between the mercury and the bulk electrolyte. A theoretical model has been developed that can account for these observations quantitatively. Comparison between experiments and theory indicates that a no-slip hydrodynamic boundary condition holds at the molecularly smooth mica/electrolyte surface and at the deformable mercury/electrolyte interface. An analysis of the transient response based on the model elucidates the complex interplay between disjoining pressure, hydrodynamic forces, and surface deformations. This study also provides insight into the mechanism and process of droplet coalescence and reveals a novel, counterintuitive mechanism that can lead to film instability and collapse when an attempt is made to thicken the film by pulling the bounding mercury and mica phases apart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results of a theoretical study of the effect of surface deformation on a macroscopic system composed of a solid surface interacting with a fluid drop through electrostatic double-layer forces. The analysis involves numerically solving a Laplace equation suitably modified to describe the shape of a liquid drop subjected to a repulsive double-layer force. The latter is evaluated in nonlinear mean-field theory. Some analytical results are also given. The results indicate that although deformation need not be significant on the macroscopic scale, its effect on the interaction is significant and modifies the picture usually presented in DLVO theory. The decay length of the exponential repulsion deviates marginally from the Debye length, dependent on the interfacial tension of the drop. More significantly, at separations where the double-layer force becomes comparable to the internal pressure of the drop, the net force between the two bodies, the local radius of curvature of the drop, and the amount of deformation grow abruptly. The results of this work are relevant to emulsion stability, micelle, vesicle, and cell interactions, and recent experiments on bubble-particle interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A direct force-measuring technique has been used to study the interaction forces between adsorbed CTAB (cetyltrimethylammonium bromide) bilayers at concentrations well above the CMC (critical micelle concentration). An analysis of these results based on the Poisson-Boltzmann equations leads to the conclusion that CTAB micelles and adsorbed bilayers are about 22(±4)% dissociated. The apparent agreement of bilayer and micellar ion binding parameters raises an important challenge for theories of double-layer interactions. In addition, the double-layer decay lengths observed in these micellar solutions appear to be due entirely to the dissociated bromide and free CTA+ ions, with no apparent contribution from charged micelles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Film thinning experiments have been conducted with aqueous films between two air phases in a thin film pressure balance. The films are free of added surfactant but simple NaCl electrolyte is added in some experiments. Initially the experiments begin with a comparatively large volume of water in a cylindrical capillary tube a few millimeters in diameter, and by withdrawing water from the center of the tube the two bounding menisci are drawn together at a prescribed rate. Thismodels two air bubbles approaching at a controlled speed. In pure water, the results show three regimes of behavior depending on the approach speed; at slow speed (<1 μm/s) it is possible to form a flat film of pure water, ∼100 nm thick, that is stabilized indefinitely by disjoining pressure due to repulsive double-layer interactions between naturally charged air/water interfaces. The data are consistent with a surface potential of -57mV on the bubble surfaces. At intermediate approach speed (∼1-150 μm/s), the films are transiently stable due to hydrodynamic drainage effects, and bubble coalescence is delayed by ∼10-100 s. At approach speeds greater than ∼150 μm/s, the hydrodynamic resistance appears to become negligible, and the bubbles coalesce without any measurable delay. Explanations for these observations are presented that take into account Derjaguin-Landau-Verwey-Overbeek and Marangoni effects entering through disjoining pressure, surface mobility, and hydrodynamic flow regimes in thin film drainage. In particular, it is argued that the dramatic reduction in hydrodynamic resistance is a transition from viscosity-controlled drainage to inertia-controlled drainage associated with a change from immobile to mobile air/water interfaces on increasing the speed of approach of two bubbles. A simple model is developed that accounts for the boundaries between different film stability or coalescence regimes. Predictions of the model are consistent with the data, and the effects of adding electrolyte can be explained. In particular, addition of electrolyte at high concentration inhibits the near-instantaneous coalescence phenomenon, thereby contributing to increased foam film stability at high approach speeds, as reported in previous literature. This work highlights the significance of bubble approach speed as well as electrolyte concentration in affecting bubble coalescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first surface force measurements under electrochemical potential control between a metal and a ceramic surface across a liquid medium (water) are reported. Our experiments also investigate and reveal how increasing levels of surface roughness and dissimilarity between the potentials of the interacting surfaces influence the strength and range of electric double layer, van der Waals, hydration, and steric forces and how this contributes to deviations from DLVO theory at small distances within aqueous solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.