84 resultados para DUAL-PHASE STEELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of the methodology for creating reliable digital material representation (DMR) models of dual-phase steels and investigation of influence of the martensite volume fraction on fracture behavior under tensile load are the main goals of the paper. First, an approach based on image processing algorithms for creating a DMR is described. Then, obtained digital microstructures are used as input for the numerical model of deformation, which takes into account mechanisms of ductile fracture. Ferrite and martensite material model parameters are evaluated on the basis of micropillar compression tests. Finally, the model is used to investigate the impact of the martensite volume fraction on the DP steel behavior under plastic deformation. Results of calculations are presented and discussed in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the cyclic plastic deformation behavior and microstructural development of a dual phase steel in both symmetric and asymmetric cycling in strain and stress control modes. The low-cycle fatigue (LCF) and mean stress relaxation (MSR) tests show very similar fatigue lifetimes. However, fatigue lifetimes reduce and prominent accumulation of directional strain was observed in ratcheting. A microstructural analysis has revealed that the type of cyclic test carried out has a noticeable impact on the substructural development, and this has been correlated with differences in accumulated tensile strain. Electron backscatter diffraction investigation has shown larger in-grain misorientation for ratcheting specimen in comparison with LCF and MSR specimens. The orientation of ferrite grains was found to have very little effect on their substructural development, and strain localization commonly occurred in the ferrite at the ferrite/martensite interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of volume fraction and hardness of martensite on the Bauschinger effect in Dual Phase (DP) steel was investigated for strain levels close to those observed in automotive stamping. Five different grades of DP steel were produced by controlled heat treatment allowing the examination of the Bauschinger effect for three different volume fractions of martensite and three levels of martensite hardness. Compression-tension and shear reversal tests were performed to examine the Bauschinger effect at high levels of forming strain. Good correlation between the shear reversal and the compression-tension test was observed suggesting that for DP steel, shear stress strain data, converted to equivalent stress-strain, may be applied directly to characterize kinematic hardening behavior for numerical simulations. Permanent softening was observed following strain reversal and increased with martensite volume fraction and pre-strain level. While the Bauschinger ratio saturates at 3% pre-strain, the Bauschinger strain increases linearly with forming strain without showing saturation. This suggests that to model material behavior accurately in forming processes involving complex loading paths and high levels of strain, test data generated at high strain is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent experiment confirmed that the infrared (IR) local heating method drastically reduces springback of dual-phase (DP) 980 sheets. In the experiment, only the plastic deformation zone of the sheets was locally heated using condensed IR heating. The heated sheets were then deformed by V-bending or 2D-draw bending. Although the experimental observation proved the merit of using the IR local heating to reduce springback, numerical modeling has not been reported. Numerical modeling has been required to predict springback and improve the understanding of the forming process. This paper presents a numerical modeling for V-bending and 2D-draw bending of DP 980 sheets exposed to the IR local heating with the finite element method (FEM). For describing the thermo-mechanical behavior of the DP 980 sheet, a flow stress model which includes a function of temperature and effective plastic strain was newly implemented into Euler-backward stress integration method. The numerical analysis shows that the IR local heating reduces the level of stress in the deformation zone, although it heats only the limited areas, and then it reduces the springback. The simulation also provides a support that the local heating method has an advantage of shape accuracy over the method to heat the material as a whole in V-bending. The simulated results of the springback in both V-bending and 2D-draw bending also show good predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A micromechanical modelling based approach by means of a Representative Volume Element (RVE) was employed to predict the flow behaviour and plastic strain of DP600 steel, produced by WISCO. Macroscopic modelling of a classical Bending-Under-Tension (BUT) experiment was employed to acquire strain deformation, and thus the following microscopic modelling was implemented by considering the realistic microstructure morphology. Comparisons between macroscopic behaviour and microscopic behaviour, including strain distribution and stress distribution, were extracted for different boundary conditions of the BUT set-up. The micro-macro modelling approach increases the understanding of the steel microstructure, which will enable this microstructure to be tailored for different applications in automobile industry in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear unloading behavior of three different commercial dual-phase steels (DP780 grade equivalent) was examined. These steels exhibited small variations in chemical composition (0.07 to 0.10 mass percent carbon) and martensite volume fraction (0.23 to 0.28), and they demonstrated similar hardening behavior. Uniaxial loading-unloading-loading tests were conducted at room temperature and quasi-static strain rates between engineering strains of 0.5 and 8%. Steel microstructures were examined using electron backscatter diffraction and nanoindentation techniques. The microplastic component of the unloading strain exhibited no dependence on the martensite volume fraction or the ferrite grain size within the small range encountered in this investigations. Instead, the magnitude of the microplastic component of the unloading strain increased as the strength ratio between the martensite and ferrite phases increased. Correspondingly, the apparent unloading modulus, or chord modulus, exhibited a greater reduction for equivalent increments of strain hardening as the strength ratio increased. These results suggest that springback can be reduced in structures containing two ductile phases if the strength ratio between the harder and softer phases is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.