29 resultados para Copper(I)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf2] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf2] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV−vis, Raman, and 1H, 13C, and 15N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf2] can be recovered from the labile copper−water−IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu2+ from aqueous media into the [mimSBu][NTf2] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf2] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction−voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The homeostatic regulation of essential elements such as copper requires many proteins whose activities are often mediated and tightly coordinated through protein-protein interactions. This regulation ensures that cells receive enough copper without intracellular concentrations reaching toxic levels. To date, only a small number of proteins implicated in copper homeostasis have been identified, and little is known of the protein-protein interactions required for this process. To identify other proteins important for copper homeostasis, while also elucidating the protein-protein interactions that are integral to the process, we have utilized a known copper protein, the copper ATPase ATP7A, as a bait in a yeast two-hybrid screen of a human cDNA library to search for interacting partners. One of the ATP7A-interacting proteins identified is a novel protein with a single PDZ domain. This protein was recently identified to interact with the plasma membrane calcium ATPase b-splice variants. We propose a change in name for this protein from PISP (plasma membrane calcium ATPase-interacting single-PDZ protein) to AIPP1 (ATPase-interacting PDZ protein) and suggest that it represents the protein that interacts with the class I PDZ binding motif identified at the ATP7A C terminus. The interaction in mammalian cells was confirmed and an additional splice variant of AIPP1 was identified. This study represents an essential step forward in identifying the proteins and elucidating the network of protein-protein interactions involved in maintaining copper homeostasis and validates the use of the yeast two-hybrid approach for this purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper transport and accumulation were studied in virgin and lactating C57BL/6 mice, with and without expression of ceruloplasmin (Cp), to assess the importance of Cp to these processes. One hour after i.p. injection of tracer 64Cu, liver and kidney accounted for 80% of the radioactivity, and mammary gland 1%, while in lactating Cp+/+ mice 2–4 days post partum, uptake by mammary gland was 9-fold higher and that of liver and other organs was decreased, with 64Cu rapidly appearing in milk. Parallel studies in Cp−/− mice (siblings from same colony) gave virtually identical results. However, their milk contained less 64Cu, and actual copper contents determined by furnace atomic absorption were less than half those for milk from normal dams. Liver copper concentrations of pups born to Cp−/− dams also were half those of pups from wild type dams. Copper in pup brains was unaffected; but iron concentrations were reduced. We conclude that absence of Cp, while not affecting entry of exchangeable copper from the blood into the mammary gland, does have a significant effect on the availability of this metal to the newborn through the milk and in the form of stores accumulating in gestation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copperII [CuII(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson’s disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from CuII(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from CuII(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with CuII(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a CuII(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from CuII(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O2 as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of CuII(atsm) that increases cellular retention of the Cu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De-alloying of S-phase in AA2024-T3 in the presence chlorides, is well-known. However, it is unclear how rare earth mercaptoacetate inhibitors affect this process when immersed in a 0.1. M NaCl solution. This paper analyses data obtained using EPMA on AA2024-T3 surfaces before and after a 16. min immersion period. Cerium and praseodymium mercaptoacetate inhibited the de-alloying process of S-phase particles. Although no significant change in composition was observed for cathodic intermetallics, each appeared to participate in local corrosion reactions as evidenced by the development of surface oxides. Clustering between S-phase and one of the Cu-containing intermetallic domains was also evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of small-angle X-ray scattering and high-precision density measurements showed that the application of counterpressure during the equal-channel angular pressing (ECAP) of ultrafine-grained copper leads to a decrease in nanoporosity and an increase in mechanical properties of the ECAP-processed metal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new finite modelling approach is presented to analyse the mode I delamination fracture toughness of z-pinned laminates using the computationally efficient embedded element technique. In the FE model,each z-pin is represented by a single one-dimensional truss element that is embedded within the laminate. Each truss is given the material, geometric and spatial properties associated with the global crackbridging traction response of a z-pin in the laminate; this simplification provides a computationally efficient and flexible model where pin elements are independent of the underlying structural mesh for thelaminate. The accuracy of the FE modelling approach is assessed using mode I interlaminar fracture toughness data for a carbon-epoxy laminate reinforced with z-pins made of copper, titanium or stainless steel. The model is able to predict with good accuracy the crack growth resistance curves and fracture toughness properties for the different types of z-pinned laminate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered copper homeostasis and hypercholesterolemia have been identified independently as risk factors for Alzheimer's disease (AD). Abnormal copper and cholesterol metabolism are implicated in the genesis of amyloid plaques and neurofibrillary tangles (NFT), which are two key pathological signatures of AD. Amyloidogenic processing of a sub-population of amyloid precursor protein (APP) that produces Aβ occurs in cholesterol-rich lipid rafts in copper deficient AD brains. Co-localization of Aβ and a paradoxical high concentration of copper in lipid rafts fosters the formation of neurotoxic Aβ:copper complexes. These complexes can catalytically oxidize cholesterol to generate H2O2, oxysterols and other lipid peroxidation products that accumulate in brains of AD cases and transgenic mouse models. Tau, the core protein component of NFTs, is sensitive to interactions with copper and cholesterol, which trigger a cascade of hyperphosphorylation and aggregation preceding the generation of NFTs. Here we present an overview of copper and cholesterol metabolism in the brain, and how their integrated failure contributes to development of AD.