83 resultados para Composites carbon fiber race car mainplane wing Dallara design CAD lamination lay-up


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile tests at high speeds corresponding to automotive crash events were conducted to understand the dynamic properties of rapidly cured woven carbon fiber composites. The High Strain Rate (HSR) experiments were conducted on a servo-hydraulic machine at constant velocities up to a maximum of 25 m/s (82 ft/s). Results from HSR tests were compared with the static results to determine the rate sensitivity of the composite. A high speed camera was used to capture the failure at HSR. The tensile properties of rapidly cured laminate were compared to oven cured laminate to justify its productivity while maintaining the desired properties. The methodology used to achieve constant velocity during HSR tests is discussed in detail. The specimen geometry was specially designed to suit the test rig and to achieve high speeds during tests. All the specimens failed with linear elasticity until sudden brittle fracture. The Scanning Electron Microscopy (SEM) images of the fracture zone were used to identify the failure modes observed at static and high strain rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated the surface finish of rapidly cured composites for automotive body panels. Findings showed that curing composites with rapid heating rates increased surface roughness, although it improved paint adhesion to the substrate. This thesis also highlighted the need for surface barriers to reduce fibre print through during aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study developed new methodologies to enhance the performance of carbon fiber in epoxy-based composites. A unique interdisciplinary approach of organic chemistry and engineering resulting in excellent real world outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of carbon fiber, particularly the oxidation/stabilization step, is a complex process. In the present study, a non-linear mathematical model has been developed for the prediction of density of polyacrylonitrile (PAN) and oxidized PAN fiber (OPF), as a key physical property for various applications, such as energy and material optimization, modeling, and design of the stabilization process. The model is based on the available functional groups in PAN and OPF. Expected functional groups, including [Formula presented], [Formula presented], –CH2, [Formula presented], and [Formula presented], were identified and quantified through the full deconvolution analysis of Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectra obtained from fibers. These functional groups form the basis of three stabilization rendering parameters, representing the cyclization, dehydrogenation and oxidation reactions that occur during PAN stabilization, and are used as the independent variables of the non-linear predictive model. The k-fold cross validation approach, with k = 10, has been employed to find the coefficients of the model. This model estimates the density of PAN and OPF independent of operational parameters and can be expanded to all operational parameters. Statistical analysis revealed good agreement between the governing model and experiments. The maximum relative error was less than 1% for the present model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the potential of improving flexural properties of natural fiber (jute) reinforced biocomposites by atmospheric pressure helium plasma treatment. Composites were made by the use of combined hand lay-up and vacuum bagging technique followed by newly developed Australia patented QuickstepTM curing. The physical properties of helium plasma modified fibers were investigated by means of wettability time, coefficient of friction (COF), atomic force microscopy (AFM) and chemical nature of the surface with ATR-FTIR and XPS. There was found a logical correlation between physical and chemical characteristics of the surface of fiber with the fracture mechanical behavior of their resulting biocomposites. In addition, the use of helium atmospheric plasma treatment prior to QuickstepTM process has proved to be a potential way to positively alter the fracture-mechanical behavior of biocomposites. This study will lead to new commercial applications of natural fiber jute for the composite industry that go beyond wrapping and packaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoplastic-toughened epoxy resins are widely used as matrices in modern composite prepreg systems. Rapid curing of thermoplastic-toughened epoxy matrix composites results in different mechanical properties. To investigate the structure–property relationship, we investigated a poly(ether sulfone)-modified triglycidylaminophenol/ 4,4'-diamino diphenyl sulfone system that was cured at different heating rates. An intermediate dwell was also applied during the rapid heating of the thermoplasticmodified epoxy system. We found that a higher heating rate led to a larger domain size of the phase-separated macrostructure and also facilitated more complete phase separation. The intermediate dwell helped phase separation to proceed even further, leading to an even larger domain size of the macrostructure. A carbon-fiber-reinforced polymer matrix composite prepreg based on the poly(ether sulfone)-modified multifunctional epoxy system was cured with the same schedule. The rapidly heated composite laminates exhibited higher mode I delamination fracture toughness than the slowly heated material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental buden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffere than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50% carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from polyurethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's modulus increases exponentially and the yield stress increases linearly. A model describing the effects of the reversible and irreversible deformations as a result of the re-arrangement of PEDOT:PSS filler networks within PU and how this relates to the electromechanical properties of the fibers during the tensile and cyclic stretching is presented. Conducting elastomeric fibers based on a composite of polyurethane (PU) and PEDOT:PSS, produced by a wet-spinning method, have high electrical conductivity and stretchability. These fibers can sense large strains by changes in resistance. The PU/PEDOT:PSS fiber is optimized to achieve the best strain sensing. PU/PEDOT:PSS fibers can be produced on a large scale and integrated into conventional textiles by weaving or knitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voids are one of the most significant defects found within composites and have been demonstrated to reduce the performance of composite structures. The understanding of the impact of the size and distribution of voids on laminate properties is still limited because voids have proven difficult to deliberately control. This study aims to understand the mechanisms by which voids are generated within out-of-autoclave cured laminates. In this study, a process of prepreg conditioning was developed to control the level of voids within test laminates. Non-conditioned laminates highlighted signs of void growth (1.5%), while conditioned laminates showed consistently low levels of voids (<0.3%). Mass spectrometry indicated higher levels of aqueous and solvent volatiles within the non-conditioned prepreg. Finally, Mode II fracture testing revealed a 21% improvement in toughness for the non-voided laminates. A model on the effect of voids within the Mode II stress state has also been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the relation between preeclampsia risk and maternal intake of dietary fiber, potassium, magnesium and calcium. STUDY DESIGN: We conducted a case-control study of 172 preeclamptics and 339 normotensive controls. Maternal dietary intake was assessed using a food frequency questionnaire. Logistic regression procedures were used to estimate the association between each dietary factor and preeclampsia risk. RESULTS: Fiber intake was inversely associated with the risk of preeclampsia. When extreme quartiles of total fiber intake were compared, the odds ratio (OR) for preeclampsia was 0.46 (95% confidence interval [CI] 0.23-0.92). The multivariate OR for preeclampsia for women in the top quartile of potassium intake (>4.1 g/d) versus the lowest quartile (<2.4 g/d) was 0.49 (95% CI 0.24-0.99). There was some evidence of a reduced risk of preeclampsia with a high intake of magnesium and calcium, though these results were not statistically significant. Intake of fruits and vegetables, low-fat dairy products, total cereal and dark bread were each associated with a reduced risk of preeclampsia. CONCLUSION: Our results support previous reports that suggest that diets high in fiber and potassium are associated with a reduced risk of hypertension. Maternal intake of recommended amounts of foods rich in fiber, potassium and other nutrients may reduce the risk of preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon black (CB) fillers were used to study the feasibility of achieving multiple percolation using an immiscible (polar) polymer blend matrix. By tailoring the morphology of the insulating dual phase matrix it has been shown that the percolation threshold (Фc) can be reduced over single-phase matrices. Cocontinuity in the polymer matrix is important in reducing Фc by either preferentially isolating the conducting filler at the interface of the two phases or within one particular continuous phase of the matrix thereby forming a continuous conducting network within a continuous network (multiple percolation). Actual melt processing time has been found to influence the dispersion of the fillers and hence Фc. Polarity of the matrix as well as the processing method has also been found to influence the dispersion of the filler within the host polymer.