17 resultados para Communications networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data aggregation in wireless sensor networks is employed to reduce the communication overhead and prolong the network lifetime. However, an adversary may compromise some sensor nodes, and use them to forge false values as the aggregation result. Previous secure data aggregation schemes have tackled this problem from different angles. The goal of those algorithms is to ensure that the Base Station (BS) does not accept any forged aggregation results. But none of them have tried to detect the nodes that inject into the network bogus aggregation results. Moreover, most of them usually have a communication overhead that is (at best) logarithmic per node. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious nodes with a constant per node communication overhead. In our solution, all aggregation results are signed with the private keys of the aggregators so that they cannot be altered by others. Nodes on each link additionally use their pairwise shared key for secure communications. Each node receives the aggregation results from its parent (sent by the parent of its parent) and its siblings (via its parent node), and verifies the aggregation result of the parent node. Theoretical analysis on energy consumption and communication overhead accords with our comparison based simulation study over random data aggregation trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delay-tolerant networks (DTNs) are emerging research topics that have attracted keen research efforts from both academia and industry. Different from the traditional communication networks, DTNs consider an extreme network condition where a complete end-to-end path between the data source and destination may not exist, and the network is subject to dynamic node connections and unstable topologies. With the above features, DTNs find broad applications in the situations where legacynetworks cannot work effectively, such as data communications in rural areas, where stable communications infrastructure is not available or costly, and crucial areas, e.g., disaster rescue and battlefield communications. To summarize, the DTNs, as an important technology complementary to traditional networkings, can be widely applied to national welfare and the people’s livelihood.