109 resultados para Cold-adapted yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an overview of a series of investigations of the microstructure and texture of cold-rolled IF and LC steel. The investigations made extensive use of orientation mapping using electron backscattered diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM). The effect of grain boundaries on the deformed microstructure was examined by comparing the textures of regions near grain boundaries and in the interiors of grains.  A general weakening of the texture, but a strengthening of the {OOI}<110> component, occurs in the vicinity of grain boundaries. Misorientation angle and axis distributions were used to characterise the fragmentation of grains belonging to different orientation classes. The influence of carbon on the deformed microstructure and nucleation during recrystallization was clarified by examining the microstructures of LC and IF steels during rolling and annealing. The
results of the investigations emphasize the important role of shear banding in determining the fragmentation behaviour of ND-fibre grains and the orientations of viable recrystallization nuclei within the deformed microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the application of neural networks to the recognition of lubrication defects typical to an industrial cold forging process employed by fastener manufacturers. The accurate recognition of lubrication errors, such as coating not being applied properly or damaged during material handling, is very important to the quality of the final product in fastener manufacture. Lubrication errors lead to increased forging loads and premature tool failure, as well as to increased defect sorting and the re-processing of the coated rod. The lubrication coating provides a barrier between the work material and the die during the drawing operation; moreover it needs be sufficiently robust to remain on the wire during the transfer to the cold forging operation. In the cold forging operation the wire undergoes multi-stage deformation without the application of any additional lubrication. Four types of lubrication errors, typical to production of fasteners, were introduced to a set of sample rods, which were subsequently drawn under laboratory conditions. The drawing force was measured, from which a limited set of features was extracted. The neural network based model learned from these features is able to recognize all types of lubrication errors to a high accuracy. The overall accuracy of the neural network model is around 98% with almost uniform distribution of errors between all four errors and the normal condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important objectives of cold metal forming research is to develop techniques that enable better manufacturing efficiencies. Within this monitoring of tooling condition is vital to providing high quality manufacturing. The objective of this research is to determine the signature derived from Acoustic Emission (AE) sensors, in order to establish the current condition of a machine tool, as applied to bolt-making. From here we aim to develop and implement an on-line condition monitoring tool for the cold forming process. A review of the literature has shown that much research into AE has been successfully applied in metal cutting operations; such as milling, drilling and turning, but little research has been done related to metal forming. This appears to be due to the complexity of obtaining consistent signals using Acoustic Emission systems, because the presence of noise in many forms. This paper will detail many of the AE signals acquired and analysed through our research. The extensive results indicate this form of condition monitoring is not suitable for metal forming in its current configuration. Further tests are proposed to enable such research to move forward, so a condition monitoring system can be established.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.
Results
We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.
Conclusion
This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β1/β2/β3). To test this hypothesis, we generated β1/β2/β3-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6Δ exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of fenitrothion exposure on birds was examined by measuring aerobic metabolism, blood hemoglobin content, plasma cholinesterases, and body weight for up to 21 d postdose. Peak metabolic rate was measured in a flight chamber in three-dose groups of house sparrows (Passer domesticus; 100 mg/kg = high, 60 mg/kg = medium, 30 mg/kg = low) and one-dose groups of zebra finches (Taeniopygia guttata; 3 mg/kg) and king quails (Coturnix chinensis; 26 mg/kg). Aerobic metabolism was measured during 1 h of exposure to subfreezing thermal conditions in low-dose house sparrows and king quails (26 mg/kg). Fenitrothion had no effect on metabolic rate during cold exposure or on blood hemoglobin at any time. By contrast, aerobic performance during exercise in sparrows was reduced by 58% (high), 18% (medium), and 20% (low), respectively, 2 d postdose. House sparrows (high) had the longest recovery period for peak metabolic rate (21 d) and plasma cholinesterase activity (14 d). House sparrows (high) and treated king quails had significantly lower myoglobin at 48 h postdose, whereas myoglobin was invariant in zebra finches and house sparrows (medium and low). Cholinesterase was maximally inhibited at 6 h postdose, and had recovered within 24 h, in house sparrows (low), king quails, and zebra finches. Exercise peak metabolic rate in zebra finches and king quails was reduced by 23% at 2 d and 3 d, respectively, despite these birds being asymptomatic in both behavior and plasma cholinesterase activities.