19 resultados para Chemical vapor reaction processes


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality single-walled carbon nanotubes (SWNTs) with narrow diameter distribution can be generated from well-defined Si8O12 nanoclusters structure which form from thermal decomposition of chemically modified polyhedral oligomeric silsesquioxane (POSS). The nanosized SixOy particles were proved to be responsible for the SWNT growth and believed to be the reason for the narrow diameter distribution of the as-grown SWNTs. This could be extended to other POSS. The SWNTs grown from the nanosized SixOy particles were found to be semiconducting enriched SWNTs (s-SWNTs). A facile patterning technology, direct photolithography, was developed for generating SWNT pattern, which is compatible to industrial-level fabrication of SWNTs pattern for device applications. The metal-free growth together with preferential growth of s-SWNTs and patterning in large scale from the structure-defined silicon oxide nanoclusters not only represent a big step toward the control growth of SWNTs and fabrication of devices for applications particularly in nanoelectronics and biomedicine but also provide a system for further studying and understanding the growth mechanism of SWNTs from nanosized materials and the relationship between the structure of SWNT and nonmetal catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing interest in two-dimensional van der Waals materials, molybdenum disulfide (MoS2) has emerged as a promising material for electronic and energy storage devices. It suffers from poor cycling stability and low rate capability when used as an anode in lithium ion batteries. Here, N-doped MoS2 nanosheets with 2-8 atomic layers, increased interlayer distance, mesoporous structure and high surface area synthesised by a simple sol-gel method show an enhanced lithium storage performance, delivering a high reversible capacity (998.0 mA h g-1, 50 mA g-1), high rate performance (610 mA h g-1, 2 A g-1), and excellent cycling stability. The excellent lithium storage performance of the MoS2 nanosheets might be due to the better electrical and ionic conductivity and improved lithium ion diffusion which are related to their structural characteristics and high concentration N doping. The possible mechanism of the improved performance is proposed and discussed.