31 resultados para Cell-surface


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy- methyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA-AM. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 °C, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/calmodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ADAMTS5 (aggrecanase-2), a key metalloprotease mediating cartilage destruction in arthritis, is synthesized as a zymogen, proADAMTS5. We report a detailed characterization of the propeptide excision mechanism and demonstrate that it is a major regulatory step with unusual characteristics. Using furin-deficient cells and a furin inhibitor, we found that proADAMTS5 was processed by proprotein convertases, specifically furin and PC7, but not PC6B. Mutagenesis of three sites containing basic residues within the ADAMTS5 propeptide (RRR46, RRR69 and RRRRR261) suggested that proADAMTS5 processing occurs after Arg261. That furin processing was essential for ADAMTS5 activity was illustrated using the known ADAMTS5 substrate aggrecan, as well as a new substrate, versican, an important regulatory proteoglycan during mammalian development. When compared to other ADAMTS proteases, proADAMTS5 processing has several distinct features. In contrast to ADAMTS1, whose furin processing products were clearly present intracellularly, cleaved ADAMTS5 propeptide and mature ADAMTS5 were found exclusively in the conditioned medium. Despite attempts to enhance detection of intracellular proADAMTS5 processing, such as by immunoprecipitation of total ADAMTS5, overexpression of furin, and secretion blockade by monensin, neither processed ADAMTS5 propeptide nor the mature enzyme were found intracellularly, which was strongly suggestive of extracellular processing. Extracellular ADAMTS5 processing was further supported by activation of proADAMTS5 added exogenously to HEK293 cells stably expressing furin. Unlike proADAMTS9, which is processed by furin at the cell-surface, to which it is bound, ADAMTS5 does not bind the cell-surface. Thus, the propeptide processing mechanism of ADAMTS5 has several points of distinction from those of other ADAMTS proteases, which may have considerable significance in the context of osteoarthritis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is one of the fastest growing threats to human health in westernised and developing countries and is associated with central obesity, atherosclerosis, dyslipidaemia, hyperinsulinaemia and  hypertension. Insulin resistance, defined as a diminished response to ordinary levels of circulating insulin in one or more peripheral tissues, is an integral feature of T2D pathophysiology. This includes an impairment of insulin to inhibit hepatic glucose output and to stimulate glucose disposal into muscle and fat. While insulin is responsible for a number of specific biological responses, stimulation of glucose transport is critical for the maintenance of glucose homeostasis. The primary mechanism for insulin stimulation of glucose uptake into muscle and fat is the translocation of glucose transporter 4 (GLUT4) to the cell surface from intracellular storage vesicles within the cell. A major advantage in focussing on insulin regulation of glucose transport is that this represents the endpoint of multiple upstream signalling pathways. This chapter describes the measurement of GLUT4 translocation in cultured cells and its potential application for both  mechanistic and therapeutic studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monoclonal antibodies were developed against pathogenic vibrios for use in rapid identification in disease situations of humans, fish and shellfish. Of the 12 fusions performed using V. alginolyticus, V. anguillarum, V. carchariae, V. cholerae, V. damsela, V. furnissii, V. harveyi, V. ordalii, V. parahaemolyticus and V. vulnificus, a total of 102 hybridomas were obtained. Based on cross-reactivity of a wide range of Vibrio strains and other gram-negative bacteria, three broad types of monoclonal antibodies were found. The three categories were: (1) ones that were species-specific or specific to a particular surface antigen, (2) a large number that reacted with several Vibrio species, and (3) three that reacted with most Vibrio strains but no other gram-negative bacteria. Each species-specific monoclonal antibody only recognized its corresponding Vibrio species and was used for identifying unknown species, confirming diagnosis of clinical isolates. In addition, several monoclonal antibodies only cross-reacted with similar Vibrio species, e.g. V. parahaemolyticus and V. alginolyticus which share a common H-antigen. Monoclonal antibodies reacting with several Vibrio species were not of particular use in diagnostic situations. Three monoclonal antibodies of the last group did not react with other genera of the family Vibrionaceae, namely Aeromonas, Photobacterium and Plesiomonas nor a wide range of gram-negative enteric bacteria. These data indicated the existence of an antigenic surface determinant common to Vibrio species. One monoclonal reacted with the heat-stable antigenic determinants on the cell surface as v as lipopolysaccharide extracted from all the vibrios studied, thus making it useful for large- scale screening of acute infections of vibrios. In a blind test, seven Vibrio species, isolated from 6 marine and a freshwater source were identified by two laboratories using phenetic tests. Results of immunotyping using monoclonals, three of seven were diagnosed as the same species, another three were designated as Vibrio species but could not be classified further due to the library not having the corresponding monoclonal, and one was diagnostically questionable. Two further tests were carried out. An unknown Vibrio formalin-fixed isolated from diseased marine animal was identified as V. parahaemolyticus by ELISA and FITC. Clinical human isolates of V. alginolyticus, V. parahaemolyticus and V. vulnificus were confirmed by monoclonals. Australian isolates of V. anguillarum appeared to be mostly of serotype O1. monoclonals raised to V. anguillarum AFHRL 1 reacted with only serotype O1 from Denmark but also most Australian isolates. All vibrios pathogenic to fish and shellfish, i.e. V. anguillarum, V. ordalii, V. alginolyticus, V. carchariae, V. cholerae, V. damsela, V. harveyi, V. parahaemolyticus and V. vulnificus, were used for attachment studies to fish cells using phase contrast and FITC-immunofluorescence microscopy. Of these vibrios, V. anguillarum, V. ordalii and V. perahaemolyticus, were found to adhere to different cells and tissues of rainbow trout while others did not appear to attach. However, attachment was inhibited by monoclonal antibodies specific to only these three vibrios. Lipopolysaccharide is well known as being a contributing factor in pathogenicity of gram-negative bacteria. PAGE electrophoresis of extracted LPS from 9 strains covering 6 Vibrio species showed the presence of a common 15,000 D fragment. This fragment was verified by immunoblotting with a genus-specific monoclonal antibody (i.e. F11P411F) recognizing nearly all vibrios. The common LPS fragment was separated and used to raise polyclonal antisera in mouse which reacted strongly with LPS itself, live as well as sodium azide-killed vibrios, but not with other gram-negative bacteria. This raised the possibility of developing vaccine from Vibrio LPS. Monoclonal antibodies developed in the present study enabled rapid identification of a number of pathogenic Vibrio species. There is still further work to produce monoclonal antibodies against additional vibrios that are probably pathogenic. These included V. fluvialis, V. hollisae, V. metschnikovii, V. minicus, V. salmonella and V. tubiashii. Together the application will be of significance in clinical diagnostic work, in the monitoring of vibriosis in fish farms and in quarantine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intercellular cell adhesion molecule-1 (ICAM-1) is a cell-surface glycoprotein capable of eliciting bidirectional signals that activate signalling pathways in leukocytes, endothelial, and smooth muscle cells. Gene transfer of xenogeneic ICAM-1 into EL-4 lymphomas causes complete tumor rejection; however, it is unknown whether the mechanism responsible involves the "foreignness" of the ICAM-1 transgene, bidirectional signalling events, ICAM-1-receptor interaction, or a combination of the latter. To begin to address this question, we constructed four different therapeutic expression vectors encoding full-length ICAM-1, and forms in which the N-terminal ligand-binding domains and cytoplasmic tail had been deleted. Mouse EL-4 tumors (0.5 cm in diameter), which actively suppress the immune response, were significantly inhibited in their growth following injection of expression plasmids encoding either full-length xenogenic (human) ICAM-1, or a functional cytoplasmic domain-deficient form that retains ligand-binding activity. Efficacy of ICAM-1-mediated antitumor immunity was significantly augmented by administration of the antivascular drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), which suppressed blood supply to the tumor, leading to enhanced leukocyte infiltration, and complete tumor eradication in a gene dosage and CD8(+) T cell and NK cell-dependent fashion. Generation of potent cytotoxic T cell (CTL)-mediated antitumor immunity was reflected by ICAM-1-facilitated apoptosis of tumor cells in situ. In contrast, nonfunctional ICAM-1 lacking the N-terminal ligand-binding Ig domain failed to generate antitumor immunity, even in the presence of DMXAA. These studies demonstrate that ICAM-1-stimulated antitumor immunity can overcome tumor-mediated immunosuppression, particularly when employed in combination with an attack on the tumor vasculature. The ligand-binding domain of ICAM-1 is essential for generating antitumor immunity, whereas the cytoplasmic domain and bidirectional activation of tumor signalling pathways are not essential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EGF domains are extracellular protein modules cross-linked by three intradomain disulfides. Past studies suggest the existence of two types of EGF domain with three-disulfides, human EGF-like (hEGF) domains and complement C1r-like (cEGF) domains, but to date no functional information has been related to the two different types, and they are not differentiated in sequence or structure databases. We have developed new sequence patterns based on the different C-termini to search specifically for the two types of EGF domains in sequence databases. The exhibited sensitivity and specificity of the new pattern-based method represents a significant advancement over the currently available sequence detection techniques. We re-annotated EGF sequences in the latest release of Swiss-Prot looking for functional relationships that might correlate with EGF type. We show that important post-translational modifications of three-disulfide EGFs, including unusual forms of glycosylation and post-translational proteolytic processing, are dependent on EGF subtype. For example, EGF domains that are shed from the cell surface and mediate intercellular signaling are all hEGFs, as are all human EGF receptor family ligands. Additional experimental data suggest that functional specialization has accompanied subtype divergence. Based on our structural analysis of EGF domains with three-disulfide bonds and comparison to laminin and integrin-like EGF domains with an additional interdomain disulfide, we propose that these hEGF and cEGF domains may have arisen from a four-disulfide ancestor by selective loss of different cysteine residues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sperm cells of pollen tubes grown both in vivo and in vitro form a male germ unit. Extensions from both sperm cells of each pollen tube are closely associated with the tube nucleus. A high yield (2.7 × 104. 20 mg−1 pollen grains germinated) of intact sperm cells was obtained following release by osmotic shock from pollen tubes grown in vitro. Structural integrity of isolated sperm was maintained by isolation at low temperature in an osmotically balanced medium. At 4° C many isolated sperm pairs were still enclosed within the pollentube inner plasma membrane. Sperm cells not enclosed within this membrane no longer remained connected as a pair. During isolation vesicles formed on the sperm cell surface from disruption of the fibrillar components bridging the periplasmic space. Both in the pollen tube and after isolation the sperm nucleus is in close association with at least one region of the sperm plasma membrane. Sperm isolated at room temperature showed the presence of nucleopores, and nuclei were euchromatic, instead of heterochromatic as in intact sperm in the pollen tube.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulin-regulated aminopeptidase (IRAP), a marker of glucose transporter 4 (GLUT4) storage vesicles (GSVs), is the only protein known to traffic with GLUT4. In the basal state, GSVs are sequestered from the constitutively recycling endosomal system to an insulin-responsive, intracellular pool. Insulin induces a rapid translocation of GSVs to the cell surface from this pool, resulting in the incorporation of IRAP and GLUT4 into the plasma membrane. We sought to identify proteins that interact with IRAP to further understand this GSV trafficking process. This study describes our identification of a novel interaction between the amino terminus of IRAP and the Akt substrate, AS160 (Akt substrate of 160 kDa). The validity of this interaction was confirmed by coimmunoprecipitation of both overexpressed and endogenous proteins. Moreover, confocal microscopy demonstrated colocalization of these proteins. In addition, we demonstrate that the IRAP-binding domain of AS160 falls within its second phosphotyrosine-binding domain and the interaction is not regulated by AS160 phosphorylation. We hypothesize that AS160 is localized to GLUT4-containing vesicles via its interaction with IRAP where it inhibits the activity of Rab substrates in its vicinity, effectively tethering the vesicles intracellularly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Receptor activity-modifying proteins (RAMPs) interact with and modify the behavior of the calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR). We have examined the contribution of the short intracellular C terminus, using constructs that delete the last eight amino acids of each RAMP. C-Terminal deletion of individual RAMPs had little effect on the signaling profile induced when complexed with CLR in COS-7 or human embryonic kidney (HEK)293 cells. Likewise, confocal microscopy revealed each of the mutant RAMPs translocated hemagglutinin-tagged CLR to the cell surface. In contrast, a pronounced effect of RAMP C-terminal truncation was seen for RAMP/CTRa complexes, studied in COS-7 cells, with significant attenuation of amylin receptor phenotype induction that was stronger for RAMP1 and -2 than RAMP3. The loss of amylin binding upon C-terminal deletion could be partially recovered with overexpression of Gαs, suggesting an impact of the RAMP C terminus on coupling of G proteins to the receptor complex. In HEK293 cells the c-Myc-RAMP1 C-terminal deletion mutant showed high receptor-independent cell surface expression; however, this construct showed low cell surface expression when expressed alone in COS-7 cells, indicating interaction of RAMPs with other cellular components via the C terminus. This mutant also had reduced cell surface expression when coexpressed with CTR. Thus, this study reveals important functionality of the RAMP C-terminal domain and identifies key differences in the role of the RAMP C terminus for CTR versus CLR-based receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ and the non-essential divalent cation Cd2+ in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5 μM Cd2+, 2 μM Co2+, 0.5 μM Cu2+, 500 μM Mn2+, 1 μM Ni2+, and 18 μM Zn2+. Cells exposed to these non-toxic concentrations with combinations of Zn2+ and Cd2+, Zn2+ and Co2+, Zn2+ and Cu2+ or Zn2+ and Ni2+, had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500 μM Mn2+ showed similar growth compared to the untreated controls. Metal levels were measured after one and 72 h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using 65Zn showed that after 72 h of exposure Zn2+ uptake was reduced by most metals particularly 0.5 μM Cd2+, while 2 μM Co2+ increased Zn2+ uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reverse transcription of the HIV RNA genome is thought to occur in the host cell cytoplasm after viral adsorption. However, viral DNA has been isolated in cell-free virus particles. We have quantitated by polymerase chain reaction (PCR) amplification the amount of viral DNA in virions as compared to RNA. Virus produced by proviral DNA transfections of cos-7 cells or by chronically-infected H9 cells; neither of which express the cell surface CD4 receptor, contained at least 1000 times more viral RNA than DNA. In contrast, only 60 times more RNA than DNA was present in virus particles produced by transfection of Jurkat cells, which were CD4-positive and thus potentially susceptible to superinfection. Protease-defective virus, carrying only the precursor of reverse transcriptase (RT) p160gag-pol, contained virtually no detectable DNA. These results indicate that only mature RT (p66/p51) and not its precursor (p160gag-pol) is responsible for the presence of viral DNA in HIV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrogenerated chemiluminescence (ECL) is fundamentally dependent on the applied electrode potential, and measuring ECL intensity over a range of different potentials is commonly used to examine the underlying chemical reaction pathways responsible for the emission of light. Several research groups have now demonstrated that the applied potential can be exploited to selectively elicit ECL from: 1) multiple excited states within a single chemical species; 2) multiple emitters sharing a common co-reactant; or 3) distinct ECL systems. This new generation of multiplexed ECL processes has been facilitated by the extensive development of novel electrochemiluminophores and instrumental approaches such as the near-continuous collection of ECL spectra with CCD detectors during voltammetry or chronoamperometry experiments. New dimensions: In electrogenerated chemiluminescence experiments the applied potential can be exploited to selectively elicit light from: multiple excited states within a single chemical species, multiple emitters sharing a common co-reactant, and distinct electrogenerated chemiluminescence systems. These findings may be used to develop low-cost portable analytical devices.