19 resultados para CROTON ELEGANS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogens have been hypothesized to play a major role in host diversity and speciation. Susceptibility of hybrid hosts to pathogens is thought to be a common phenomenon that could promote host population divergence and subsequently speciation. However, few studies have tested for pathogen infection across animal hybrid zones while testing for codivergence of the pathogens in the hybridizing host complex. Over 8 y, we studied natural infection by a rapidly evolving single-strand DNA virus, beak and feather diseases virus (BFDV), which infects parrots, exploiting a host-ring species complex (Platycercus elegans) in Australia. We found that host subspecies and their hybrids varied strikingly in both BFDV prevalence and load: both hybrid and phenotypically intermediate subspecies had lower prevalence and load compared with parental subspecies, while controlling for host age, sex, longitude and latitude, as well as temporal effects. We sequenced viral isolates throughout the range, which revealed patterns of genomic variation analogous to Mayr's ring-species hypothesis, to our knowledge for the first time in any host-pathogen system. Viral phylogeny, geographic location, intraspecific host density, and parrot community diversity and composition did not explain the differences in BFDV prevalence or load between subpopulations. Overall, our analyses suggest that functional host responses to infection, or force of infection, differ between subspecies and hybrids. Our findings highlight the role of host hybridization and clines in altering host-pathogen interactions, dynamics that can have important implications for models of speciation with gene flow, and offer insights into how pathogens may adapt to diverging host populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfaction is an ancient sensory capability, and yet while it is now widely recognized that birds have olfactory mechanisms, use of the sense within a social context has been largely overlooked. In our study, we aimed to determine, for the first time, whether plumage odour may contribute to avian subspecies discrimination. We used a species complex, the crimson rosella, Platycercus elegans, which exhibits large geographical and phenotypic differences. Across 2 years in a wild population of P.elegans elegans we tested whether females at the nest could: (1) discriminate odours of conspecifics; (2) discriminate odours of subspecies; (3) discriminate odours of sexes of conspecifics; and (4) habituate at different rates to odour treatments. We found that female response differed between odours of feathers of consubspecifics, heterosubspecifics, heterospecific controls and sham controls and between odours of sexes of conspecifics. Across all odour treatments, we found habituation to the odour and the rate of habituation differed between odour treatments. Our results indicate that P.e. elegans females are able to discriminate conspecifics, consubspecifics and sexes based on plumage odour. To our knowledge, this is the first work to show that birds of a certain subspecies can discriminate the odour of its own subspecies from that of other subspecies. Our findings suggest that olfaction in birds may play a larger role than hitherto considered, and may even act as a signal to maintain or promote population divergence. © 2014 The Association for the Study of Animal Behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs) are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs), resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Allen's rule posits that the appendages of endothermic organisms will be larger in warmer climates to allow for dumping of heat loads. Given a link between appendage size and climate, we tested the prediction that climate change has driven the evolution of larger bills in birds, resulting in measurable changes over the recent past. Location: Australia. Methods: We explored geographical and temporal variation in bill surface area of five Australian parrot species to determine whether individuals from warmer climates have larger bills, and whether there have been increases in bill surface area over time, consistent with climatic warming. Measurements were obtained from museum specimens dating from 1871 to 2008. These data were then related to geographical location, collection date and locality-specific climate data, in order to construct and compare models of spatio-temporal and climate-related variation in bill morphology. Results: There have been increases in bill surface area in mulga parrots (Psephotus varius), gang-gang cockatoos (Callocephalon fimbriatum), red-rumped parrots (Psephotus haematonotus) and male crimson rosellas (Platycercus elegans), equating to a c. 4-10% increase in bill surface area since 1871. Average maximum summer temperature in the 5 years prior to specimen collection also positively predicted bill surface area in mulga parrots, red-rumped parrots and crimson rosellas, consistent with Allen's rule. With the exception of red-rumped parrots, however, models with geographical location and year of collection were still better predictors of bill surface area than local climate at the date of collection. Main conclusions: Our analysis provides evidence that four species of parrot have exhibited adaptive change in bills over the past century potentially mitigating the thermal stress caused by climatic warming. Although consistent with the predicted effects of climate change, the temporal patterns we observe may have additional causes, however, such as changes in primary productivity, habitat or food availability.