18 resultados para CONTROLLABILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real road vehicle tests are time consuming, laborious, and costly, and involve several safety concerns. Road vehicle motion simulators (RVMS) could assist with vehicle testing, and eliminate or reduce the difficulties traditionally associated with conducting vehicle tests. However, such simulators must exhibit a high level of fidelity and accuracy in order to provide realistic and reliable outcomes. In this paper, we review existing RVMS and discuss each of the major RVMS subsystems related to the research and development of vehicle dynamics. The possibility of utilising motion simulators to conduct ride and handling test scenarios is also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor vehicle accidents are one of the main killers on the road. Modern vehicles have several safety features to improve the stability and controllability. The tire condition is critical to the proper function of the designed safety features. Under or over inflated tires adversely affects the stability of vehicles. It is generally the vehicle's user responsibility to ensure the tire inflation pressure is set and maintained to the required value using a tire inflator. In the tire inflator operation, the vehicle's user sets the desired value and the machine has to complete the task. During the inflation process, the pressure sensor does not read instantaneous static pressure to ensure the target value is reached. Hence, the inflator is designed to stop repetitively for pressure reading and avoid over inflation. This makes the inflation process slow, especially for large tires. This paper presents a novel approach using artificial neural network based technique to identify the tire size. Once the tire size is correctly identified, an optimized inflation cycle can be computed to improve performance, speed and accuracy of the inflation process. The developed neural network model was successfully simulated and tested for predicting tire size from the given sets of input parameters. The test results are analyzed and discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed.