58 resultados para C ALLOYS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical approach to the formation of a protective surface film on Mg alloys immersed in the ionic liquid (IL), trihexyl(tetradecyl)phosphonium–bis 2,4,4-trimethylpentylphosphinate, was investigated in this work. Initially, cyclic voltammetry was used with the Mg alloy being cycled from OCP to more anodic potentials. EIS data indicate that, under these circumstances, an optimum level of protection was achieved at intermediate potentials (e.g., 0 or 0.25 V versus Ag/AgCl). In the second part of this paper, a small constant bias was applied to the Mg alloy immersed in the IL for extended periods using a novel cell design. This electrochemical cell allowed us to monitor in situ surface film formation on the metal surface as well as the subsequent corrosion behaviour of the metal in a corrosive medium. This apparatus was used to investigate the evolution of the surface film on an AZ31 magnesium alloy under a potential bias (between ±100 mV versus open circuit) applied for over 24 h, and the film evolution was monitored using electrochemical impedance spectroscopy (EIS). A film resistance was determined from the EIS data and it was shown that this increased substantially during the first few hours (independent of the bias potential used) with a subsequent decrease upon longer exposure of the surface to the IL. Preliminary characterization of the film formed on the Mg alloy surface using ToF-SIMS indicates that a multilayer surface exists with a phosphorous rich outer layer and a native oxide/hydroxide film underlying this. The corrosion performance of a treated AZ31 specimen when exposed to 0.1 M NaCl aqueous solution showed considerable improvement, consistent with electrochemical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work examines the extrusion and mechanical properties of MExlOO alloys, which contain levels of rare earth alloying additions up to 0.4 wt%. It is shown that these alloys can display the high extrudability of alloy Ml with strengths nearing those of AZ31. Most importantly, the grades display high room temperature ductility; values of total tensile elongation as high as 30% have been observed. These benefits derive from a combination of grain refinement and texture weakening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such “wiring”. These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerium diphenyl phosphate (Ce(dpp)3) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp)3 compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg–Zr–Ca alloys were developed for new biodegradable bone implant materials. The microstructure and mechanical property of the Mg–xZr–yCa [x=0·5, 1·0% and y=1·0, 2·0% (wt-% hereafter)] alloys were characterised by optical microscopy, compressive and hardness tests. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM). Results indicated that the mechanical properties of the Mg–Zr–Ca are in the range of the mechanical properties of natural bone. The corrosion rate and biocompatibility decreases with the increase in the Ca content in the Mg–Zr–Ca alloys. The solutions of SBF and MMEM with the immersion of the Mg–Zr–Ca alloys show strong alkalisation. The Zr addition to the Mg–Zr–Ca alloys leads to an increase in the corrosion resistance, compressive strength and the ductility of the alloys, and a decrease in the elastic modulus of the Mg–Zr–Ca alloys.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The martensitic transformation crystallography in two Ni 53Mn25Ga22 (at. %) ferromagnetic shape memory alloys (FSMAs) was investigated by means of misorientation calculation and pole figure analysis based on the orientation of the martensitic lamellae obtained from electron backscattered diffraction (EBSD) measurements. In the alloy that was first annealed at 1073K for 4h, and then cooled to 473K at ~4K/min and held for 30min, followed by cooling to room temperature at ~10K/min, there are only two kinds of differently orientated martensitic lamellae with a misorientation angle of ~82° distributed alternatively in each initial austenite grain. There is a compound twinning orientation relationship between the two lamellae. The prevalent orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship with (111)A//(10I)M, [1-10]a//[11-1]m. In the alloy that was annealed at 1173K for 4h followed by furnace cooling, nanoscale twins inside the martensitic lamellae were observed and the orientation relationships both between the nanotwins within one lamella and between the nanotwins in two neighboring lamellae were determined. The results presented in this paper will enrich the crystallographic data of the FSMAs and offer useful information for the development of novel FSMAs with optimal performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) have received great attention during the past decade due to their giant magnetic shape memory effect and fast dynamic response. The crystal structure and crystallographic features of two Ni-Mn-Ga alloys were precisely determined in this study. Neutron diffraction measurements show that Ni48Mn30Ga22 has a Heusler austenitic structure at room temperature; its crystal structure changes into a seven-layered martensitic structure when cooled to 243K. Ni53Mn25Ga22 has an I4/mmm martensitic structure at room temperature. Electron backscattered diffraction (EBSD) analyses reveal that there are only two martensitic variants with a misorientation of ~82° around <110> axis in each initial austenite grain in Ni53Mn25Ga22. The investigation on crystal structure and crystallographic features will shed light on the development of high-performance FSMAs with optimal properties.