44 resultados para Building materials.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – The results which that study seeks to report are the first part of a larger research programme funded by the New Zealand Foundation for Research, Science & Technology (FRST) aimed at gaining a better understanding of stakeholder perceptions in relation to bio-based products.

Design/methodology/approach – Utilising three chemically modified wood products, data were collected from focus groups and questionnaires and centred primarily on perceptions surrounding the acceptability of building materials that have been bio-modified. Irrespective of the type of chemical modification, family health and durability were the most important factors identified.

Findings – The study finds that product cost rated lower in the 16 factors evaluated, and energy used in production was of little concern. When comparing the three products to one another, two distinct groups with quite differing purchasing philosophies were identified and these perspectives significantly influenced perceptions of product acceptability and willingness to purchase. Utilising a paired comparison technique, an investigation of trade-offs indicated preference for performance over cost and product familiarity. Similarly, low chemical emissions were also preferred over cost considerations. Among the findings, there was scepticism regarding trust in manufacturers to adequately safeguard health and safety and to have a minimum impact on the environment. Low levels of trust were expressed in regard to manufacturers' concern for future generations.

Originality/value – The paper develops an investigative framework which could be applied to the evaluation of products arising from bio-material technology innovation and recommendations for future research directions.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ln Australia in the 1950s, the average house size was approximately 100 mz. By 2008, the average size of a new house had risen to approximately 238 mz i.e. an increase of nearly 140%. Over the same period, occupancy levels have fallen by nearly one third from 3.7 to 2.5 persons per household. The aim of this paper is to contrast the total and per capita resource demand (direct and embodied energy, water and materials) for two houses typical of their respective era and draw some conclusions from the results. Using the software Autodesk Revit Architecture and drawings for typical 1950 and 2009 houses, the material quantities for these dwellings have been determined. Using known coefficients, the embodied energy and water in the materials have been calculated. Operating energy requirements have been calculated using NatHERS estimates. Water requirements have been calculated using historical and current water data. The greenhouse gas emissions associated with the resource use have also been calculated using established coefficients. Results are compared on a per capita basis. The research found that although the energy to operate the modern house and annual water use had fallen, the embodied energy and associated greenhouse gas emissions from material use had risen significantly. This was driven by the size of the house and the change in construction practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impacts on the environment from human activities are of increasing concern. The need to consider the reduction in energy consumption is of particular interest, especially in the construction and operation of buildings, which accounts for between 30 and 40% of Australia's national energy consumption. Much past and more recent emphasis has been placed on methods for reducing the energy consumed in the operation of buildings. With the energy embodied in these buildings having been shown to account for an equally large proportion of a building's life cycle energy consumption, there is a need to look at ways of reducing the embodied energy of buildings and related products. Life cycle assessment (LCA) is considered to be the most appropriate tool for assessing the life cycle energy consumption of buildings and their products. The life cycle inventory analysis (LCIA) step of a LCA, where an inventory of material and energy inputs is gathered, may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and LCIA methods. These traditional methods of LCIA include process-based and input-output-based LCIA. Process-based LCIA uses process specific data, whilst input-output-based LCIA uses data produced from an analysis of the flow of goods and services between sectors of the Australian economy, also known as input-output data. With the incompleteness and unreliability of these two respective methods in mind, hybrid LCIA methods have been developed to minimise the errors associated with traditional LCIA methods, combining both process and input-output data. Hybrid LCIA methods based on process data have shown to be incomplete. Hybrid LCIA methods based on input-output data involve substituting available process data into the input-output model minimising the errors associated with process-based hybrid LCIA methods. However, until now, this LCIA method had not been tested for its level of completeness and reliability. The aim of this study was to assess the reliability and completeness of hybrid life cycle inventory analysis, as applied to the Australian construction industry. A range of case studies were selected in order to apply the input-output-based hybrid LCIA method and evaluate the subsequent results as obtained from each case study. These case studies included buildings: two commercial office buildings, two residential buildings, a recreational building; and building related products: a solar hot water system, a building integrated photovoltaic system and a washing machine. The range of building types and products selected assisted in testing the input-output-based hybrid LCIA method for its applicability across a wide range of product types. The input-output-based hybrid LCIA method was applied to each of the selected case studies in order to obtain their respective embodied energy results. These results were then evaluated with the use of a number of evaluation methods. These evaluation methods included an analysis of the difference between the process-based and input-output-based hybrid LCIA results as an evaluation of the completeness of the process-based LCIA method. The second method of evaluation used was a comparison between equivalent process and input-output values used in the input-output-based hybrid LCIA method as a measure of reliability. It was found that the results from a typical process-based LCIA and process-based hybrid LCIA have a large gap when compared to input-output-based hybrid LCIA results (up to 80%). This gap has shown that the currently available quantity of process data in Australia is insufficient. The comparison between equivalent process-based and input-output-based LCIA values showed that the input-output data does not provide a reliable representation of the equivalent process values, for material energy intensities, material inputs and whole products. Therefore, the use of input-output data to account for inadequate or missing process data is not reliable. However, as there is currently no other method for filling the gaps in traditional process-based LCIA, and as input-output data is considered to be more complete than process data, and the errors may be somewhat lower, using input-output data to fill the gaps in traditional process-based LCIA appears to be better than not using any data at all. The input-output-based hybrid LCIA method evaluated in this study has shown to be the most sophisticated and complete currently available LCIA method for assessing the environmental impacts associated with buildings and building related products. This finding is significant as the construction and operation of buildings accounts for a large proportion of national energy consumption. The use of the input-output-based hybrid LCIA method for products other than those related to the Australian construction industry may be appropriate, especially if the material inputs of the product being assessed are similar to those typically used in the construction industry. The input-output-based hybrid LCIA method has been used to correct some of the errors and limitations associated with previous LCIA methods, without the introduction of any new errors. Improvements in current input-output models are also needed, particularly to account for the inclusion of capital equipment inputs (i.e. the energy required to manufacture the machinery and other equipment used in the production of building materials, products etc.). Although further improvements in the quantity of currently available process data are also needed, this study has shown that with the current available embodied energy data for LCIA, the input-output-based hybrid LCIA appears to provide the most reliable and complete method for use in assessing the environmental impacts of the Australian construction industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buildings have a significant impact on the environment due to the energy required for the manufacture of construction materials. The method of assessing the energy embodied in a product is known as energy analysis. Detailed office building embodied energy case studies are very rare. However, there is evidence to suggest that the energy requirements for the construction phase of commercial buildings, including the energy embodied in materials, is a significant component of the life cycle energy requirements. This thesis sets out to examine the current state of energy analysis, determine the national average energy intensities < i.e. embodied energy rates < for building materials and assess the significance of using national average energy intensities for the energy analysis of a case study office building. Likely ranges of variation in the building material embodied energy rates from the national averages are estimated and the resulting distribution for total embodied energy in the case study building simulated. Strategies for improving the energy analysis methods and data are suggested. Detailed energy analysis is shown to be a useful indicative method of quantifying the energy required for the construction of buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of the direct and indirect requirements for energy is known as embodied energy analysis. For buildings, the direct energy includes that used primarily on site, while the indirect energy includes primarily the energy required for the manufacture of building materials. This thesis is concerned with the completeness and reliability of embodied energy analysis methods. Previous methods tend to address either one of these issues, but not both at the same time. Industry-based methods are incomplete. National statistical methods, while comprehensive, are a ‘black box’ and are subject to errors. A new hybrid embodied energy analysis method is derived to optimise the benefits of previous methods while minimising their flaws. In industry-based studies, known as ‘process analyses’, the energy embodied in a product is traced laboriously upstream by examining the inputs to each preceding process towards raw materials. Process analyses can be significantly incomplete, due to increasing complexity. The other major embodied energy analysis method, ‘input-output analysis’, comprises the use of national statistics. While the input-output framework is comprehensive, many inherent assumptions make the results unreliable. Hybrid analysis methods involve the combination of the two major embodied energy analysis methods discussed above, either based on process analysis or input-output analysis. The intention in both hybrid analysis methods is to reduce errors associated with the two major methods on which they are based. However, the problems inherent to each of the original methods tend to remain, to some degree, in the associated hybrid versions. Process-based hybrid analyses tend to be incomplete, due to the exclusions associated with the process analysis framework. However, input-output-based hybrid analyses tend to be unreliable because the substitution of process analysis data into the input-output framework causes unwanted indirect effects. A key deficiency in previous input-output-based hybrid analysis methods is that the input-output model is a ‘black box’, since important flows of goods and services with respect to the embodied energy of a sector cannot be readily identified. A new input-output-based hybrid analysis method was therefore developed, requiring the decomposition of the input-output model into mutually exclusive components (ie, ‘direct energy paths’). A direct energy path represents a discrete energy requirement, possibly occurring one or more transactions upstream from the process under consideration. For example, the energy required directly to manufacture the steel used in the construction of a building would represent a direct energy path of one non-energy transaction in length. A direct energy path comprises a ‘product quantity’ (for example, the total tonnes of cement used) and a ‘direct energy intensity’ (for example, the energy required directly for cement manufacture, per tonne). The input-output model was decomposed into direct energy paths for the ‘residential building construction’ sector. It was shown that 592 direct energy paths were required to describe 90% of the overall total energy intensity for ‘residential building construction’. By extracting direct energy paths using yet smaller threshold values, they were shown to be mutually exclusive. Consequently, the modification of direct energy paths using process analysis data does not cause unwanted indirect effects. A non-standard individual residential building was then selected to demonstrate the benefits of the new input-output-based hybrid analysis method in cases where the products of a sector may not be similar. Particular direct energy paths were modified with case specific process analysis data. Product quantities and direct energy intensities were derived and used to modify some of the direct energy paths. The intention of this demonstration was to determine whether 90% of the total embodied energy calculated for the building could comprise the process analysis data normally collected for the building. However, it was found that only 51% of the total comprised normally collected process analysis. The integration of process analysis data with 90% of the direct energy paths by value was unsuccessful because: • typically only one of the direct energy path components was modified using process analysis data (ie, either the product quantity or the direct energy intensity); • of the complexity of the paths derived for ‘residential building construction’; and • of the lack of reliable and consistent process analysis data from industry, for both product quantities and direct energy intensities. While the input-output model used was the best available for Australia, many errors were likely to be carried through to the direct energy paths for ‘residential building construction’. Consequently, both the value and relative importance of the direct energy paths for ‘residential building construction’ were generally found to be a poor model for the demonstration building. This was expected. Nevertheless, in the absence of better data from industry, the input-output data is likely to remain the most appropriate for completing the framework of embodied energy analyses of many types of products—even in non-standard cases. ‘Residential building construction’ was one of the 22 most complex Australian economic sectors (ie, comprising those requiring between 592 and 3215 direct energy paths to describe 90% of their total energy intensities). Consequently, for the other 87 non-energy sectors of the Australian economy, the input-output-based hybrid analysis method is likely to produce more reliable results than those calculated for the demonstration building using the direct energy paths for ‘residential building construction’. For more complex sectors than ‘residential building construction’, the new input-output-based hybrid analysis method derived here allows available process analysis data to be integrated with the input-output data in a comprehensive framework. The proportion of the result comprising the more reliable process analysis data can be calculated and used as a measure of the reliability of the result for that product or part of the product being analysed (for example, a building material or component). To ensure that future applications of the new input-output-based hybrid analysis method produce reliable results, new sources of process analysis data are required, including for such processes as services (for example, ‘banking’) and processes involving the transformation of basic materials into complex products (for example, steel and copper into an electric motor). However, even considering the limitations of the demonstration described above, the new input-output-based hybrid analysis method developed achieved the aim of the thesis: to develop a new embodied energy analysis method that allows reliable process analysis data to be integrated into the comprehensive, yet unreliable, input-output framework. Plain language summary Embodied energy analysis comprises the assessment of the direct and indirect energy requirements associated with a process. For example, the construction of a building requires the manufacture of steel structural members, and thus indirectly requires the energy used directly and indirectly in their manufacture. Embodied energy is an important measure of ecological sustainability because energy is used in virtually every human activity and many of these activities are interrelated. This thesis is concerned with the relationship between the completeness of embodied energy analysis methods and their reliability. However, previous industry-based methods, while reliable, are incomplete. Previous national statistical methods, while comprehensive, are a ‘black box’ subject to errors. A new method is derived, involving the decomposition of the comprehensive national statistical model into components that can be modified discretely using the more reliable industry data, and is demonstrated for an individual building. The demonstration failed to integrate enough industry data into the national statistical model, due to the unexpected complexity of the national statistical data and the lack of available industry data regarding energy and non-energy product requirements. These unique findings highlight the flaws in previous methods. Reliable process analysis and input-output data are required, particularly for those processes that were unable to be examined in the demonstration of the new embodied energy analysis method. This includes the energy requirements of services sectors, such as banking, and processes involving the transformation of basic materials into complex products, such as refrigerators. The application of the new method to less complex products, such as individual building materials or components, is likely to be more successful than to the residential building demonstration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis demonstrates a strong relationship between life cycle energy and life cycle cost based on an analysis of thirty recent Melbourne buildings. Embodied energy (initial cost) can be reliably modelled by construction cost (initial cost) and thus be readily available as early design advice, enabling more sustainable development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of green building materials and products promotes conservation of non-renewable resources and help reduce associated environmental impacts. This article reports the acoustical performance of a precast panel system made largely from concrete waste material. Two major applications for such panels that are being investigated currently include walls and claddings to industrial and commercial buildings and sound barriers for urban freeways. In this study, the application of the concrete panels for optimizing reverberation time (RT) in sports halls is tested using numerical simulations. As an innovative approach, additional layers are added to the precast panels to improve their appearance. The absorption coefficients of the concrete panel improved significantly with the architectural finish. The material can be tuned according to the required peak frequency. The architectural finish helped reduce the RT for frequencies above 500 Hz. Its application to different types of ceilings revealed that the RT of curved ceiling reduced up to 40% compared to flat and hybrid ceiling. A comparison of wall and ceiling modifications in small, medium and large sports halls showed that medium-sized halls have better acoustical performance compared with small and large halls with ceiling as well as wall treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Booklet describing why, when and how to use plywood in domestic settings in post-war Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a response to calls for making construction activities environmentally conscious, alternatives to mechanical demolition such as deconstruction, recycling and reuse for re-entering building materials and components back in to the supply chain have emerged. However, deconstruction has remained unexploited within the construction industry due to the adverse effects of barriers and challenges that make demolishing contractors shy away from implementing deconstruction in projects. On assessment of the barriers/challenges facing deconstruction it was revealed that deconstruction, like all construction activities, is fraught with various health and safety hazards. This study attempts to identify the role of health and safety risks in impeding the widespread implementation of deconstruction practices in construction projects. Afterwards, major health and safety risks associated with deconstruction activities are identified. Findings of the present study are based on the results acquired through conducting unstructured interviews with 6 demolition contractors in South Australia. The study contributes to the body of knowledge by further establishing the deconstruction field and providing a basis for future investigations into barriers of deconstruction. Further, presented discussions would provide professional implications by offering guidelines for managing deconstruction projects in a safer and more efficient environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research produced a series of novel oranotin and organotellurium compounds that are potential building blocks for new materials. In particular, one carbonate cluster has practical applications in the fixation and recovery of carbon dioxide gas from the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International pressure to reduce greenhouse gas emissions has forced many countries to look beyond 'demand side' measures. Several industry sectors are examining indirect requirements for energy and other resources that involve significant greenhouse gas emissions. The operation of buildings is responsible for approximately one quarter of greenhouse gas emissions in Australia. Moreover, he construction process consumes vast quantities of raw materials and complex goods and services each year. Each of the processes required for the provision of these products requires energy, and most of this is fossil fuel based. A national model of greenhouse gas emissions is required for residential building construction, to indicate where emissions reduction strategies should focus. A disaggregated input-output model is developed for the Australian residential building construction sector, and recommendations are made about how this model can be used in the development of policies of emissions mitigation for both the sector and individual residential buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key criterion by which any building will be judged when its environmental impact is assessed is its thermal performance. This paper describes the simulation of an office module in a three-storey university building in south eastern Australia. The module, located at the north-west corner of the top floor of the building, was chosen because it is likely to have the highest cooling load - a primary concern of energy conscious designers of commercial buildings for most parts of Australia.

In the paper, the initial key assumptions are stated, together with a description of a "reference" or base case, against which improvements in thermal performance were measured. The simulation process identified the major influences on thermal performance. This enabled changes in materials and construction, as well as basic design concepts to be evaluated. Features incorporated into the base case such as a metal roof and glazed walkway were found to have adverse influence on energy consumption, and were consequently rejected in preference for an improved design which included a hypocaust slab system on the roof of the office module. The final design was predicted to reduce the annual energy consumption for heating and cooling by 72% and 76% respectively.

La performance thermique est l'un des critegraveres cleacutes de l'eacutevaluation environnementale de tout bacirctiment. Cet article deacutecrit la simulation d'un module de bureau appartenant agrave un immeuble de trois eacutetages d'une universiteacute du sud-est de l'Australie. Ce module, situeacute agrave l'angle nord-ouest de l'eacutetage supeacuterieur du bacirctiment a eacuteteacute choisi car c'eacutetait lui qui, vraisemblablement, avait la charge de refroidissement la plus eacuteleveacutee, ce qui est une preacuteoccupation majeure des concepteurs conscients des problegravemes d'eacutenergie des bacirctiments commerciaux dans la plus grande partie du pays. Le processus de simulation a fait apparaicirctre trois influences principales sur la performance thermique par rapport agrave un cas de base. Cela a permis d'eacutevaluer les modifications apporteacutees aux mateacuteriaux et agrave la construction ainsi qu'aux avant-projets. Les caracteacuteristiques inteacutegreacutees dans le cas de base comme le toit meacutetallique et la passerelle vitreacutee avaient une influence neacutefaste sur la consommation d'eacutenergie et ont donc eacuteteacute rejeteacutees au beacuteneacutefice d'un concept ameacutelioreacute qui comprenait une dalle de type hypocauste sur le toit du module de bureau. Le concept final devrait reacuteduire la consommation annuelle d'eacutenergie pour le chauffage et le refroidissement de 72 % et 76 % respectivement, ce qui donne une ideacutee de la valeur ajouteacutee au processus de production agrave partir de proceacutedures avanceacutees de modeacutelisation et de simulation.