24 resultados para Biofilm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algal blooms are a management concern in shallow water bodies. This project investigated the use of artificial substrates to enhance biofilm growth and shift primary production from the open water to artificial surfaces. This resulted in a shift from algal dominated wetland back to a clear water macrophyte dominated wetland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, advanced characterization of membrane fouling as a diagnostic tool has been summarized to prevent membrane fouling. Physical, chemical and biological analyses as membrane autopsies are mainly utilized to better understand membrane foulant. The physical characterization gives structure, roughness, charge effect, strength and hydrophobicity of membrane fouling. The chemical methods provide qualitative and quantitative measurements of different inorganic and organic matter. The biological properties present the spatial biofilm distribution, structure of dominant microorganisms and isolation and identification of microorganisms. In addition, detailed membrane foulant types are reviewed in terms of structure, roughness, hydrophobicity, charge effect, strength, calcium, magnesium, aluminum, iron, silicate, particle, functional group, biopolymer, humic acid, polysaccharide, structural composition, biofilm structure, microorganism and foulant interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly all drinking water distribution systems experience a "natural" reduction of disinfection residuals. The most frequently used disinfectant is chlorine, which can decay due to reactions with organic and inorganic compounds in the water and by liquid/solids reaction with the biofilm, pipe walls and sediments. Usually levels of 0.2-0.5 mg/L of free chlorine are required at the point of consumption to maintain bacteriological safety. Higher concentrations are not desirable as they present the problems of taste and odour and increase formation of disinfection by-products. It is usually a considerable concern for the operators of drinking water distribution systems to manage chlorine residuals at the "optimum level", considering all these issues. This paper describes how the chlorine profile in a drinking water distribution system can be modelled and optimised on the basis of readily and inexpensively available laboratory data. Methods are presented for deriving the laboratory data, fitting a chlorine decay model of bulk water to the data and applying the model, in conjunction with a simplified hydraulic model, to obtain the chlorine profile in a distribution system at steady flow conditions. Two case studies are used to demonstrate the utility of the technique. Melbourne's Greenvale-Sydenham distribution system is unfiltered and uses chlorination as its only treatment. The chlorine model developed from laboratory data was applied to the whole system and the chlorine profile was shown to be accurately simulated. Biofilm was not found to critically affect chlorine decay. In the other case study, Sydney Water's Nepean system was modelled from limited hydraulic data. Chlorine decay and trihalomethane (THM) formation in raw and treated water were measured in a laboratory, and a chlorine decay and THM model was derived on the basis of these data. Simulated chlorine and THM profiles agree well with the measured values available. Various applications of this modelling approach are also briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of drinking water generally degrades when it is delivered through a distribution system due to the decay of disinfectant, which subsequently allows the re-growth of microorganisms in the distribution system. A model that describes the changes that occur in the water quality in distribution system is needed to determine whether to enhance the treatment processes or to improve the distribution system so that microbiological criteria are met. This paper describes how chlorine decay kinetics are modeled and the model output is used in finding the elements that are contributing to the consumption of chlorine at the treatment plant other than the water itself; this allows better control of chlorine dosing at the treatment plant, which in tum will reduce the formation of disinfectant by-products. In addition, the model will accurately predict the decay due to the organic/inorganic and nitrogenous compounds that are remaining in the water at any point in the distribution system, which will indicate the status of the distribution system with respect to its chlorine consumption. Further, if re-chlorination is introduced in the distribution system downstream of the treatment plant, the model will predict the chlorine decay due to the slow reacting organic and nitrogenous compounds accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic water quality model for drinking water distribution systems has been developed in this study, to include processes that occur in the bulk water, as well as those occurring in the biofilm of a distribution system. The model has been validated against water quality data obtained from extensive experimental studies conducted with biofilm reactors. Protein and carbohydrate densities in the biofilm represent biofilm biomass. This model is able to predict the disinfectant decay due to organic matter in the bulk water, as well as that due to biofilm. It simultaneously predicts the growth of biofilm in terms of carbohydrate and protein densities. While this model is complex enough to describe the water quality changes in a distribution system, it is also simple enough to be incorporated into a hydraulic model in order to describe the interaction between disinfectant and microbiological quality throughout a drinking water distribution system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly all drinking water distribution systems experience a "natural" reduction of disinfection residuals. The most frequently used disinfectant is chlorine, which can decay due to reactions with organic and inorganic compounds in the water and by liquid/solids reaction with the biofilm, pipe walls and sediments. Usually levels of 0.2-0.5 mg/L of free chlorine are required at the point of consumption to maintain bacteriological safety. Higher concentrations are not desirable as they present the problems of taste and odour and increase formation of disinfection by-products. It is usually a considerable concern for the operators of drinking water distribution systems to manage chlorine residuals at the "optimum level", considering all these issues. This paper describes how the chlorine profile in a drinking water distribution system can be modelled and optimised on the basis of readily and inexpensively available laboratory data. Methods are presented for deriving the laboratory data, fitting a chlorine decay model of bulk water to the data and applying the model, in conjunction with a simplified hydraulic model, to obtain the chlorine profile in a distribution system at steady flow conditions. Two case studies are used to demonstrate the utility of the technique. Melbourne's Greenvale-Sydenham distribution system is unfiltered and uses chlorination as its only treatment. The chlorine model developed from laboratory data was applied to the whole system and the chlorine profile was shown to be accurately simulated. Biofilm was not found to critically affect chlorine decay. In the other case study, Sydney Water's Nepean system was modelled from limited hydraulic data. Chlorine decay and trihalomethane (THM) formation in raw and treated water were measured in a laboratory, and a chlorine decay and THM model was derived on the basis of these data. Simulated chlorine and THM profiles agree well with the measured values available. Various applications of this modelling approach are also briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent two dimensional nuclear magnetic resonance (NMR) techniques access exchange in pore structures through surface relaxation and diffusion based relaxation [1-4]. This research applies these techniques to measure pore changes due to biofilm growth and the impact this growth has on diffusion transport. The porous media used in this study are model beadpacks constructed from borosilicate glass beads with diameters approximately 100 um. This research shows that through changes in the relaxation rates, NMR can be used to verity biofilm growth in porous media

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.